Fatigue Life Assessment of Deck Barge Construction Using Numerical Simulation Methods
DOI:
https://doi.org/10.62012/zl.v4i2.26541Keywords:
Barge; Main Deck; Stress; Fatigue Life; contruction.Abstract
Barges are used as the main means of transporting heavy goods such as nickel, wood, coal and other materials that are placed on the main deck and have implications for stress values and construction fatigue life. This study uses a numerical simulation method with the help of ANSYS software. The load simulations given to the main deck construction of the barge are 50% load, 75% load, and 100% load (full load). The results of the numerical simulation detected that the largest stress occurred when the 100% load condition was 190.7 MPa. The stress with 75% load is 160.21 MPa and the stress for 50% load is 129.73 MPa. The fatigue life at 100% load is 10.66 years with a stress cycle of 170000 times, 75% load is 13.49 years with a stress cycle of 300000, and a 50% load is 21.16 years with the a stress cycle of 700000. -Downloads
References
D. A. Puspitasari, “Desain Floating Power Plant Dengan Tenaga Panel Surya Untuk Masyarakat Maluku Utara,” Institut Teknologi Sepuluh Nopember Surabaya, 2018.
& W. S. M. Chougle, S., “Generations of Crude Oil,” J. Res. Sci. Technol. Eng. Math, vol. 4, no. 10, pp. 309–313, 2015.
B. A. Adietya & B. Arifin, “Analisa Kekuatan Deck Pada Ponton Batubara Prawiramas Puri Prima II 1036 Dwt Dengan Software Berbasis Metode Elemen Hingga,” KAPAL J. Ilmu Pengetah. Teknol. Kelaut., vol. 8, no. 1, pp. 1–5, 2011.
I. Setiawan, “Analisis Fatigue Life Konstruksi Main Deck Kapal Tongkang Menggunakan Metode Elemen Hingga,” Institut Teknologi Kalimantan, 2020.
Alamsyah et al., “The Fatigue Life Assessment of Sideboard on Deck Barge Using Finite Element Methods,” MIPI, vol. 16, no. 1, 2022.
N. S. Riyanto et al., “Analisa Kekuatan Deck Akibat Perubahan Muatan Pada Tongkang TK. NELLY – 34,” J. Tek. Perkapalan, vol. 8, no. 3, pp. 454–460, 2020.
M. H. Pratama et al., “Analisis Kekuatan Konstruksi Car Deck Kapal Penyeberangan 1000 GT Akibat Perubahan Muatan Dengan Metode Elemen Hingga,” J. Tek. Perkapalan, vol. 8, no. 3, pp. 426–434, 2020.
A. Pangestu et al., “Analisis Fatigue Life Konstruksi Kapal Tanker 17500 DWT Menggunakan Metode Simplified Fatigue Analysis,” J. Tek. ITS, vol. 8, no. 1, pp. G52–G57, 2018.
M. N. Misbah et al., “Perkiraan Umur Lelah Struktur Kapal Berbasis Keandalan dengan Metode Mean Value First Order Second Moment,” KAPAL J. Ilmu Pengetah. dan Teknol. Kelaut, vol. 16, no. 2, pp. 74–80, 2019.
Z. Liu et al., “Fatigue Life Reliability Based Design Optimization for The Missile Suspension Structure,” Multidiscip. Model. Mater. Struct., vol. 8, no. 1, pp. 120–129, 2012.
Alamsyah et al., “An Analyze of Fatigue Life Construction of Lifting Poonton for Small Vessel,” in in 3rd Bicame, 2020, pp. 95–101, [Online]. Available: https://www.scientific.net/AST.104.95.pdf.
Alamsyah et al., “The Strength Analysis of and Fatigue Life of SPOB Propeller Shaft,” Wave J. Ilm. Teknol. Marit., vol. 13, no. 2, pp. 91–98, 2019.
Alamsyah et al., “The Fatigue Life Analysis of TB Ship. 27 M the Shaft Using the Finite Element Method,” Inovtek Polbeng, vol. 10, no. 2, pp. 144–151, 2020.
O. F. Hughes & J. K. Paik, Ship structural analysis and design. New Jersey: Society of Naval Architects and Marine Engineers (SNAME)., 2010.
I. A. of C. S. (IACS), Common structural rules for double hull oil tanker. 2014.
K. Hectors and W. D. Waele, “Cumulative Damage and Life Prediction Models for High-Cycle Fatigue of Metals: A Review,” Metals (Basel)., vol. 11, pp. 1–32, 2021.
M. J. Martinez, “Fatigue of offshore structures: A review of statistical fatigue damage assessment for stochastic loadings,” Int. J. Fatigue, 2020.
DNVGL, Fatigue design of offshore steel structures. 2014.
Yuchao Yuan et al., “Fatigue analysis of a steel catenary riser at touchdown zone with seabed resistance and hydrodynamic forces,” Ocean Eng., vol. 244, no. 110446, pp. 1–10, 2022.
Xin Fang et al., “Fatigue crack growth prediction method for offshore platform based on digital twin,” Ocean Eng., vol. 244, no. 110320, pp. 1–18, 2022.
Junlin Deng et al., “Analysis of biaxial proportional low-cycle fatigue and biaxial accumulative plasticity of hull inclined-crack plate,” Int. J. Nav. Archit. Ocean Eng., vol. 14, no. 100423, pp. 1–15, 2022.
Jin-Ho Lee et al., “Low-Cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior,” Int. J. Nav. Archit. Ocean Eng., vol. 12, no. 100423, pp. 868–880, 2020.
Qin Dong et al., “Low Cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading,” Int. J. Nav. Archit. Ocean Eng., vol. 11, pp. 671–678, 2019.
Yooil Kim et al., “Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB,” Int. J. Nav. Archit. Ocean Eng., vol. 11, pp. 178–201, 2019.
Sung Wook Kong et al., “Study on Fatigue experiment for transverse butt welds under 2G and 3G weld positions,” Int. J. Nav. Archit. Ocean Eng., vol. 7, pp. 833–847, 2015.
Gaute Storhaug, “The Measured contribution of whipping and springing on the fatigue and extreme loading of container vessels,” Int. J. Nav. Archit. Ocean Eng., vol. 6, pp. 1096–1110, 2014.
ANSYS, “Perpetual license 1 task Life Time Institut Teknologi Kalimantan.” Balikpapan, 2022.
PT. Meranti Nusa Bahari, “Main Dimensions & Construction of Barges,” 2019.
P. Caridis, Inspection, repair and maintenance of ship structures 2th ed. London: Witherby, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alamsyah Alamsyah, Irvan Setiawan, Amalia Ika Wulandari, Rodlian Jamal Ikhwani, Suardi Suardi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Allow anyone to modify, improve, and make derivative works, even for commercial purposes, as long as they credit to you for the original work.