Ethanolic extract of black grapes (Vitis Vinifera) ameliorates overtraining-induced pancreatic β-cells and muscle damage
PDF

Keywords

Balinese grapes
pancreatic β cells
creatine kinase
overtraining.

How to Cite

Siswanto, F. M., Pradhany, R. C., Yenniastoeti, B. P., & Pangkahila, A. (2020). Ethanolic extract of black grapes (Vitis Vinifera) ameliorates overtraining-induced pancreatic β-cells and muscle damage. Jurnal Riset Veteriner Indonesia (Journal of The Indonesian Veterinary Research), 4(2). https://doi.org/10.20956/jrvi.v4i2.9688

Abstract

Overtraining is a high-volume, high-intensity, long-duration, and high-frequency training. The heavier physical training, the more oxygen needed for metabolism. Increasing oxygen usage causes an elevation of electron leakage in mitochondria;thus,produce a higher amount of reactive oxygen species (ROS). Antioxidant inhibits oxidative damage in a target molecule. Grapes contain a lot of antioxidants, such as polyphenols and anthocyanins. The purpose of this study was to examine the effect of ethanol extract of Balinese grapes (Vitis vinifera) on β-cells and muscle damage in overtraining-induced rats. This study was a completely randomized experimental study using a posttest only control group design. Samples were 36 male albino rats (Rattus norvergicus), aged 2.5-3 months, divided randomly into two groups. The control group (P0), 18 rats, were given overtraining and placebo of 2 ml distilled water; the treatment group (P1) 18 rats, were given overtraining and 25g/kg.BW ethanol extract of Balinese grapes. The result showed the average amount of pancreatic β-cells in the P0 group was higher than the P1 group (p< 0.001). In addition, the average level of creatine kinase was also higher in the P1 group than those of the P0 group (p<0,001). It can be concluded that the administration of ethanolic extract of Balinese grapes mitigates the damage on pancreatic β-cells and muscle cells induced with overtraining.
https://doi.org/10.20956/jrvi.v4i2.9688
PDF

References

Baird, M. F., Graham, S. M., Baker, J. S., & Bickerstaff, G. F. (2012). Creatine-Kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery. Journal of Nutrition and Metabolism, 2012, 1–13. https://doi.org/10.1155/2012/960363

Boots, A. W., Drent, M., de Boer, V. C. J., Bast, A., & Haenen, G. R. M. M. (2011). Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clinical Nutrition, 30(4), 506–512. https://doi.org/10.1016/j.clnu.2011.01.010

Brancaccio, P., Maffulli, N., & Limongelli, F. M. (2007). Creatine kinase monitoring in sport medicine. British Medical Bulletin, 81–82(1), 209–230. https://doi.org/10.1093/bmb/ldm014

Delmastro, M. M., & Piganelli, J. D. (2011). Oxidative Stress and Redox Modulation Potential in Type 1 Diabetes. Clinical and Developmental Immunology, 2011, 1–15. https://doi.org/10.1155/2011/593863

Dias Soares, J., Pereira Leal, A. B., Silva, J., Almeida, J. G. S., & de Oliveira, H. (2017). Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacognosy Magazine, 13(52), 639. https://doi.org/10.4103/pm.pm_87_17

Doshi, P., Adsule, P., Banerjee, K., & Oulkar, D. (2015). Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. Journal of Food Science and Technology, 52(1), 181–190. https://doi.org/10.1007/s13197-013-0991-1

Ghorbani, A., Rashidi, R., & Shafiee-Nick, R. (2019). Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomedicine & Pharmacotherapy, 111, 947–957. https://doi.org/10.1016/j.biopha.2018.12.127

González-Montero, J., Brito, R., Gajardo, A. I., & Rodrigo, R. (2018). Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World Journal of Cardiology, 10(9), 74–86. https://doi.org/10.4330/wjc.v10.i9.74

Gulati, M., Pandey, D. K., Arnsdorf, M. F., Lauderdale, D. S., Thisted, R. A., Wicklund, R. H., … Black, H. R. (2003). Exercise Capacity and the Risk of Death in Women. Circulation, 108(13), 1554–1559. https://doi.org/10.1161/01.CIR.0000091080.57509.E9

Haryanto, P., Pangkahila, A., Aman, I. G. M., & Siswanto, F. M. (2019). Pengaruh Latihan Fisik Intensitas Sedang terhadap Jumlah Reseptor Insulin di Jaringan Lemak Tikus Jantan Obesitas The Influence of Moderate Intensity Exercise to The Level of Insulin Receptors on Adipose Tissue of Obese Male Rats, 7(1), 23–27. https://doi.org/10.23886/ejki.7.9587.Abstrak

Jones, S., D’Silva, A., Bhuva, A., Lloyd, G., Manisty, C., Moon, J. C., … Hughes, A. D. (2017). Improved Exercise-Related Skeletal Muscle Oxygen Consumption Following Uptake of Endurance Training Measured Using Near-Infrared Spectroscopy. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.01018

Kartiko, B. H., & Siswanto, F. M. (2015). Hormon dalam konsep Anti Aging Medicine. Jurnal Virgin, 1(2), 108–122.

Kartiko, B. H., & Siswanto, F. M. (2018). Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. Sport Sciences for Health, 14(2), 1–7. https://doi.org/10.1007/s11332-018-0433-6

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779

Lee, Y.-E., Kim, J.-W., Lee, E.-M., Ahn, Y.-B., Song, K.-H., Yoon, K.-H., … Ko, S.-H. (2012). Chronic Resveratrol Treatment Protects Pancreatic Islets against Oxidative Stress in db/db Mice. PLoS ONE, 7(11), e50412. https://doi.org/10.1371/journal.pone.0050412

Mansuri, M. L., Parihar, P., Solanki, I., & Parihar, M. S. (2014). Flavonoids in modulation of cell survival signalling pathways. Genes & Nutrition, 9(3), 400. https://doi.org/10.1007/s12263-014-0400-z

Maurya, A. K., & Vinayak, M. (2016). PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide. PLOS ONE, 11(8), e0160686. https://doi.org/10.1371/journal.pone.0160686

Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/C4RA13315C

Nyandra, M., Kartiko, B. H., Arunngam, P., Pangkahila, A., & Siswanto, F. M. (2018). Overtraining Induces Oxidative Stress Mediated Renal Damage in Male Wistar Rats. Transylvanian Review, 26(28), 7659–7666.

Pangkahila, E., Linawati, N. M., Sugiritama, I. W., & Siswanto, F. M. (2019). Pelatihan Fisik Berlebih Meningkatkan Indeks Apoptosis pada Hepatosit Tikus (Rattus norvegicus) Wistar Jantan. Jurnal Biomedik, 11(3), 144–149.

Pereira, B. C., Pauli, J. R., Antunes, L. M. G., de Freitas, E. C., de Almeida, M. R., de Paula Venâncio, V., … da Silva, A. S. R. (2013). Overtraining is associated with DNA damage in blood and skeletal muscle cells of Swiss mice. BMC Physiology, 13, 11. https://doi.org/10.1186/1472-6793-13-11

Pinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L., & Ardévol, A. (2008). Bioactivity of Flavonoids on Insulin-Secreting Cells. Comprehensive Reviews in Food Science and Food Safety, 7(4), 299–308. https://doi.org/10.1111/j.1541-4337.2008.00048.x

Siswanto, F. M., & Pangkahila, A. (2014). Pelatihan Fisik Seimbang Meningkatkan Aktivitas Stem Cell Endogen Untuk Anti Penuaan. Sport and Fitness Journal, 2(1), 1–9.

Siswanto, F. M., & Pangkahila, E. A. (2015). Pola Hidup Tidak Teratur dan Aktivitas Fisik Berlebih Menurunkan Kemampuan Aktivitas Seksual. Sport and Fitness Journal, 3(1), 59–69.

Siswanto, F. M., Yenniastuti, B., Putra, T. A., & Kardena, I. M. (2015). Aktivitas Fisik Maksimal Akut (Acute Overtraining) Menyebabkan Kerusakan Sel β Pankreas Mencit. Jurnal Biomedik, 7(2), 125–130.

Velagapudi, R., El-Bakoush, A., & Olajide, O. A. (2018). Activation of Nrf2 Pathway Contributes to Neuroprotection by the Dietary Flavonoid Tiliroside. Molecular Neurobiology, 55(10), 8103–8123. https://doi.org/10.1007/s12035-018-0975-2

Wasfy, M. M., Hutter, A. M., & Weiner, R. B. (2016). Sudden Cardiac Death in Athletes. Methodist DeBakey Cardiovascular Journal, 12(2), 76–80. https://doi.org/10.14797/mdcj-12-2-76

Widhiantara, I. G., Arunngam, P., & Siswanto, F. M. (2018). Ethanolic Extract of Caesalpinia bonducella f. Seed Ameliorates Diabetes Phenotype of Streptozotocin- Nicotinamide-Induced Type 2 Diabetes Rat. Biomedical and Pharmacology Journal, 11(2), 1127–1133. https://doi.org/10.13005/bpj/1473

Yang, L., Xian, D., Xiong, X., Lai, R., Song, J., & Zhong, J. (2018). Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. BioMed Research International, 2018, 1–11. https://doi.org/10.1155/2018/8584136

Youl, E., Bardy, G., Magous, R., Cros, G., Sejalon, F., Virsolvy, A., … Oiry, C. (2010). Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway. British Journal of Pharmacology, 161(4), 799–814. https://doi.org/10.1111/j.1476-5381.2010.00910.x

Zenitalia, Pangkahila, A., Pangkahila, W., & Siswanto, F. M. (2018). Pelatihan Fisik Berlebih Menurunkan Jumlah Hematopoietic Stem Cells (HSCs) Dibandingkan Pelatihan Fisik Seimbang pada Tikus (Rattus norvegicus) Wistar Jantan. Jurnal Biomedik, 10(1), 16–23.

Zhong, F., & Jiang, Y. (2019). Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in Diabetes. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00101

Zoppi, C. C., & Macedo, D. V. (2007). Overreaching-induced oxidative stress, enhanced HSP72 expression, antioxidant and oxidative enzymes downregulation. Scandinavian Journal of Medicine & Science in Sports, 18(1), 67–76. https://doi.org/10.1111/j.1600-0838.2006.00630.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Array

Downloads

Download data is not yet available.