Classification Of Factors Influencing Diabetes Mellitus Type II By Using Multivariate Adaptive Regression Spline At Rantau Prapat Regional Hospital

Authors

  • widya panjaitan Department of Mathmatics, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara Medan
  • Hendra Cipta Department of Mathmatics, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara Medan

DOI:

https://doi.org/10.20956/j.v20i3.34293

Keywords:

Diabetes Melitus Tipe II, GCV, MARS

Abstract

Diabetes Mellitus is a metabolic disease caused by increased levels of glucose or blood sugar. Diabetes Mellitus is divided into three different types: type I diabetes, type II diabetes, and gestational diabetes or diabetes during pregnancy.  Type 2 diabetes mellitus affects 90–95% of diabetics.  The aim of this research is to identify related factors that influence Type II Diabetes Mellitus by applying the Multivariate Adaptive Regression Spline (MARS) Method. The model with the lowest Generalized Cross-Validation (GCV) score among the models constructed is considered the best model. The research findings show that BF=10, MI=3, and MO=0 are the optimal parameter combinations for the MARS model with a GCV value of 0,09582998 .  According to research using MARS, the predictor variables with an 89.33% classification accuracy that affect the blood glucose levels of Type II Diabetes Mellitus patients include Age (X1), Gender (X2), Blood Pressure (X3), and Comorbidities (X5).

Downloads

Download data is not yet available.

References

. Anggraini, R. F, 2021. Klasifikasi Kabupaten tertinggal di Jawa Timur dengan metode multivariate adaptive regression spline (MARS). Fakultas Sains dan Teknologi, Universits Islam Negeri Sunan Ampel, Surabaya.

. Argina, A. M, 2020. Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes. Indonesian Journal of Data and Science, Vol. 1, No. 2, 29–33.

. Budianto, R. E., Linawati, N. M., Arijana, I. G. K. N., Wahyuniari, I. A. I., & Wiryawan, I. G. N. S, 2022. Potensi Senyawa Fitokimia pada Tumbuhan dalam Menurunkan Kadar Glukosa Darah pada Diabetes Melitus. Jurnal Sains Dan Kesehatan, Vol. 4, No. 5, 548–556.

. Darwin, & Safarin Zurimi, 2019. Analisis Model Aplikatif Multivariate Adaptive Regression Spline ( MARS) Terhadap Klasifikasi Faktor yang Mempengaruhi Masa Studi Mahasiswa FKIP Universitas Darussalam Ambon. Jurnal Simetrik, Vol. 9, No. 2, 250-255.

. Helmi, H., Aryati, F., & Anggraini, R, 2022. Evaluasi Pengobatan Pasien Diabetes Mellitus Dengan Hipertensi Di RSUD Abdul Wahab Sjahranie Samarinda. Jurnal Sains Dan Kesehatan, Vol. 4, No. 1, 9-12

. Mattalunru, M. R., Annas, S., & Aidid, M. K, 2022. Aplikasi Multivariate Adaptive Regression Splines (MARS) Untuk Mengetahui Faktor yang Mempengaruhi Curah Hujan di Kota Makassar. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, Vol. 4, No. 1, 9-19

. Nariswari, R., & Rafikasari, E. F, 2019. Perbandingan Metode Analisis Diskriminan, Neural Network, Diskriminan Kernel, Regresi Logistic, Mars Untuk Data Bangkitan (Kombinasi Varians, Overlap Dan Korelasi). Media Bina Ilmiah, Vol. 13, No. 11, 1763-1774.

. Panggabean, G. F., & Mansyur, A, 2023. Penerapan Multivariate Adaptive Regression Splines pada Laju Produk Domestik Regional Bruto Menurut Lapangan Usaha di Provinsi Sumatera Utara. Jurnal Sains Dan Teknologi, Vol. 2, No. 1, 159-171.

. Prihastuti Yasmirullah, S. D., Otok, B. W., Trijoyo Purnomo, J. D., & Prastyo, D. D, 2021. Modification of Multivariate Adaptive Regression Spline (MARS). Journal of Physics: Conference Series, Vol. 1863, No. 1, 1-10.

. Putra, R. Y., Roza, A., & Putri, H. M, 2021. Pendekatan Multivariate Adaptive Regression Splines Untuk Memodelkan Tingkat Kemiskinan Di Provinsi Sumatera Barat. MAp (Mathematics and Applications) Journal, Vol. 3, No. 2, 92-98

. Qi, X., Wang, H., Pan, X., Chu, J., & Chiam, K, 2021. Prediction of interfaces of geological formations using the multivariate adaptive regression spline method. Underground Space (China), Vol. 6, No. 3, 252-266.

. Ramadhani, N. F., Siregar, K. N., Adrian, V., Sari, I. R., & Hikmahrachim, H. G, 2022. Hubungan Aktivitas Fisik dengan Diabetes Melitus pada Wanita Usia 20-25 di DKI Jakarta (Analisis Data Posbindu PTM 2019). Jurnal Biostatistik, Kependudukan, Dan Informatika Kesehatan, Vol. 2, No. 2, 72-78

. Risambessy, S., Aulele, S. N., & Lembang, F. K, 2022. Misclassification Analysis of Elementary School Accreditation Data in Ambon City Using Multivariate Adaptive Regression Spline. Jurnal Matematika, Statistika Dan Komputasi, Vol. 18, No. 3, 394-406.

. Shafana, N. R., & Gunawan, G, 2022. Analisis Faktor yang Mempengaruhi Kesadaran Penduduk dalam Vaksin Covid-19 Menggunakan Metode Multivariate Adaptive Regression Spline. Jurnal Riset Matematika, Vol. 1, No. 2, 154-162.

. Tamonob, O, 2020. Analisis Multivariate Adaptive Regression Splines (MARS) Untuk Mengklasifikasikan Status Desa di Provinsi Nusa Tenggara Timur. Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor.

. Widiasari, K. R., Wijaya, I. M. K., & Suputra, P. A, 2021. Diabetes Melitus Tipe 2: Faktor Risiko, Diagnosis, Dan Tatalaksana. Ganesha Medicine, Vol. 1, No. 2, 114-120.

Downloads

Published

2024-05-15

How to Cite

panjaitan, widya, & Cipta, H. . (2024). Classification Of Factors Influencing Diabetes Mellitus Type II By Using Multivariate Adaptive Regression Spline At Rantau Prapat Regional Hospital. Jurnal Matematika, Statistika Dan Komputasi, 20(3), 693-709. https://doi.org/10.20956/j.v20i3.34293

Issue

Section

Research Articles