Eligibility Classification of Aid Recipients Hope Family Program in Cinta Rakyat Village Using the Method Weighted Naive Bayes with Laplace Smoothing

Authors

  • Nurjannah Nurjannah Universitas Islam Negeri Sumatera Utara
  • Hendra Cipta University Islam Negeri Sumatera Utara
  • Rima Aprilia University Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.20956/j.v20i2.32069

Keywords:

PKH, Classification, Weighted Naive Bayes, Laplace Smoothing

Abstract

The Indonesian government sometimes faces difficulties in dealing with poverty problems.  The Indonesian government utilizes a number of programs and stimulants to overcome the problem of poverty.  The government's PKH program offers conditional assistance to low-income families who have been designated as PKH recipient households.  PKH provision is still below optimal standards, this may be because the data used is not updated frequently.  To assist village officials in determining which residents are eligible to receive PKH assistance, this research tries to classify the eligibility of recipient residents in Cinta Rakyat Village.  With the Weighted Naive Bayes method, classification calculations are not only based on probability distributions but also by adding weights to each attribute to the class.  Assisted with Laplace Smoothing to avoid a probability value of 0. As a result, there are eight factors that determine a person's eligibility to receive PKH assistance, including age, occupation, income, number of family members, number of dependent school children, quality of house, type of floor, and type of walls. As well as classification into eligible and non-eligible groups.  And obtained test results using the Confusion Matrix with an accuracy value of 95.65%, error rate of 4.34%, sensitivity of 100% and specificity of 94.74%.  To identify village communities who deserve PKH assistance, Cinta Rakyat Village administrators can use the findings of this research.  

Downloads

Download data is not yet available.

References

Amin, N. F., Garancang, S., & Abunawas, K., 2023. Konsep Umum Populasi dan Sampel Dalam Penelitian. JURNAL PILAR: Jurnal Kajian Islam Kontemporer, 14(1), 5–31.

Annisya, N. M. O., & Novira, A., 2023. Implementasi Program Keluarga Harapan (PKH) di Kelurahan Kampung Seraya Kecamatan Batu Ampar Kota Batam. Jurnal Wacana Kinerja: Kajian Praktis-Akademis Kinerja Dan Administrasi Pelayanan Publik, 26(1), 29. https://doi.org/10.31845/jwk.v26i1.810

Davier, M. V., 2023. Omitted Response Treatment Using a Modified Laplace Smoothing for Approximate Bayesian Inference in Item Response Theory. Retrieved from https://doi.org/10.31234/osf.io/pc395

Djabar, D. A., Olilingo, F. Z., & Santoso, I. R., 2022. Efektivitas Pelaksanaan Program Keluarga Harapan (PKH) Dalam Upaya Penanggulangan Kemiskinan Di Desa Lonuo Kecamatan Tilingkabila Kabupaten Bonebolango. EKOMBIS REVIEW: Jurnal Ilmiah Ekonomi Dan Bisnis, 10(2). https://doi.org/10.37676/ekombis.v10i2.1887

Gu, Y., 2023. Exploring the application of teaching evaluation models incorporating association rules and weighted naive Bayesian algorithms. Intelligent Systems with Applications, 20, 200297. https://doi.org/10.1016/j.iswa.2023.200297

Guo, W., Wang, G., Wang, C., & Wang, Y., 2023. Distribution network topology identification based on gradient boosting decision tree and attribute weighted naive Bayes. Energy Reports, 9, 727–736. https://doi.org/10.1016/j.egyr.2023.04.256

Hidayat, M., 2018. Penentuan Pemberian Bantuan Program Keluarga Harapan Dengan Metode Topsis. Jurnal PPKM 1, 98–106.

Idris, M., 2019. Implementasi Data mining Dengan Algoritma Naive Bayes Untuk Memprediksi Angka Kelahiran. Jurnal Pelita Informatika, 7(3), 421–428.

Jollyta, D., Ramdhan, W., & Zarlis, M., 2020. Konsep Data mining Dan Penerapan. Yogyakarta: CV BUDI UTAMA.

Khairi, M. W., & Aidar, N., 2018. Pengaruh Subsidi Energi terhadap Kemiskinan diIndonesia. Jurnal Ilmiah Mahasiswa (JIM), 3(3), 359–369.

Kim, T., & Lee, J.S., 2022. Exponential Loss Minimization for Learning Weighted Naive Bayes Classifiers. IEEE Access, 10, 22724–22736. https://doi.org/10.1109/ACCESS.2022.3155231

Listiowarni, I., & Ramadhani, N., 2019. Implementasi Naïve Bayessian dengan Laplacian Smoothing untuk Peminatan dan Lintas Minat Siswa SMAN 5 Pamekasan. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 8(2), 124–129. https://doi.org/10.32736/sisfokom.v8i2.652

Marisa, F., Maukar, A. L., & Akhriza, T. M., 2021. Data mining Konsep Dan Penerapannya. Yogyakarta: CV BUDI UTAMA.

Mesran, M., Diansyah, T. M., & Fadlina, F., 2019. Implemententasi Metode Rank Order Cendroid (ROC) dan Operational Competitiveness Rating Analysis (OCRA) dalam Penilaian Kinerja Dosen Komputer Menerapkan (Studi Kasus: STMIK Budi Darma). Prosiding Seminar Nasional Riset Information Science (SENARIS), 1, 822. https://doi.org/10.30645/senaris.v1i0.89

Nadilla, H. F., Nurwati, N., & Santoso, M. B., 2022. PERAN PENDAMPING PROGRAM KELUARGA HARAPAN (PKH) DALAM PENANGGULANGAN ANAK STUNTING PADA KELUARGA PENERIMA MANFAAT. Focus : Jurnal Pekerjaan Sosial, 5(1), 17. https://doi.org/10.24198/focus.v5i1.39561

Narayan, S., & Sathiyamoorthy E., 2023. Early Prediction of Heart Diseases using Naive Bayes Classification Algorithm and Laplace Smoothing Technique. International Journal of Grid and High Performance Computing, 14(1), 1–14. https://doi.org/10.4018/IJGHPC.316157

Nur Aeda, & Riadul Jannah, 2022. Implementasi dan Efektifitas Program Keluarga Harapan (PKH) dalam Meningkatkan Kesejahteraan Ekonomi Masyarakat. Studi di Desa Kekait Kecamatan Gunungsari Kabupaten Lombok Barat. Journal of Economics and Business, 8(1), 165–186. https://doi.org/10.29303/ekonobis.v8i1.98

Randy, H., & Musdar, I. A., 2018. Aplikasi Prediksi Kerusakan Smartphone Menggunakan Metode Naive Bayes Dan Laplace Smoothing. JTRISTE, 5(2).

Sethi, J. K., & Mittal, M., 2022. Efficient weighted naive bayes classifiers to predict air quality index. Earth Science Informatics, 15(1), 541–552. https://doi.org/10.1007/s12145-021-00755-7

Umam, K., & Arifianto, D., 2020. Metode Optimasi Pembobotan Gain Ratio Terhadap Metode Klasifikasi Weighted Naive Bayes Studi Kasus Ulasan Produk White Perfect Clinical Day Cream.

Wardhama, A., & Kharisma, B., 2019. Peran Pengeluaran Sektor Pendidikan dan Sektor Kesehatan Terhadap Kemiskinan di Indonesia. Jurnal Ekonomi Dan Bisnis, 8(12).

Yoga, I. K., Prasetyowati, S. S., & Sibaroni, Y., 2022. Prediction And Mapping Rainfall Classification Using Naive Bayes And Simple Kriging. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 07(04), 1244–1253.

Yusuf Hidayat, Laila Azkia, M. R., 2022. Hambatan Pelaksanaan Program Keluarga Harapan (PKH) Dalam Peningkatan Kesejahteraan Sosial Masyarakat Di Kelurahan Pelambuan Kota Banjarmasin. PADARINGAN (Jurnal Pendidikan Sosiologi Antropologi), 4(2), 93. https://doi.org/10.20527/padaringan.v4i2.5457

Downloads

Published

2023-12-24

How to Cite

Nurjannah, N., Cipta, H. ., & Aprilia, R. . (2023). Eligibility Classification of Aid Recipients Hope Family Program in Cinta Rakyat Village Using the Method Weighted Naive Bayes with Laplace Smoothing. Jurnal Matematika, Statistika Dan Komputasi, 20(2), 440-454. https://doi.org/10.20956/j.v20i2.32069

Issue

Section

Research Articles