Modeling Determinants of Composite Stock Price Index Based on Multivariable Nonparametric Penalized Spline Regression Model alized Spline

Authors

  • Dhita Hartanti Octavia Program Studi Statistika, FMIPA-Universitas Hasanuddin
  • Asma Auliarani Universitas Hasanuddin
  • Siswanto Siswanto Program Studi Statistika, FMIPA-Universitas Hasanuddin
  • Anisa Kalondeng Program Studi Statistika, FMIPA-Universitas Hasanuddin

DOI:

https://doi.org/10.20956/j.v20i3.32145

Keywords:

IHSG, Nonparametric, Penalized Spline, Regression

Abstract

The Composite Stock Price Index (IHSG) is a critical indicator in the Indonesian capital market, playing a central role as one of the key instruments influencing the dynamics of a country's economy. Modeling IHSG can provide a substantial contribution to stakeholders in the capital market, facilitating investment decision-making. Therefore, it is essential to obtain accurate and responsive estimates for IHSG data. The IHSG data used covers the period from January 2020 to December 2022 and tends to be fluctuating. Hence, a spline regression analysis with effective penalized spline estimation is applied to overcome the limitations of assumptions in the relationship between variables. The variables used in the modeling include inflation, exchange rates, interest rates, and IDJ. From the analysis results, optimal values based on the minimum GCV for each variable are sequentially 0.278, 0.904, 0.751, and 0.665. It is also known that these four variables collectively have a 92.1% influence, with inflation having varied impacts, exchange rates exhibiting a stronger negative effect at certain levels, interest rates showing opposite effects depending on their levels, and IDJ having a positive effect on IHSG movements. The significant variability of these impacts indicates that these variables make important contributions. In other words, IHSG fluctuations can be explained by variations in the values of inflation, exchange rates, interest rates, and IDJ.

Downloads

Download data is not yet available.

References

. Agustina, N., & Abdul Mukid, M., 2015. Pemodelan Data Indeks Harga Saham Gabungan Menggunakan Regresi Penalized Spline. JURNAL GAUSSIAN, Vol. 4, 603–612.

. Anggriana, R. S., & Paramita, R. A. S., 2020. Analisis Pengaruh BI Rate, Kurs, Inflasi, Harga Minyak, dan Harga Emas Dunia terhadap Indeks Harga Saham Gabungan Periode 2016-2019. Jurnal Ilmu Manajemen, Vol. 8, No. 3, 1085–1098.

. Arifin, A. F., & Astuti, E. T., 2020. Pemodelan Nilai Ekspor Kelapa Sawit di Indonesia Menggunakan Smoothing Kernel (Modeling the Value of Palm Oil Exports in Indonesia Using Smoothing Kernel). Seminar Nasional Official Statistics, 1094–1104.

. Asmara, I. P. W. P., & Surajaya, A. A. G., 2018. Pengaruh Variabel Makro Ekonomi terhadap Indeks Harga Saham Gabungan. E-Jurnal Manajemen Unud, Vol. 7, No. 3, 1397–1425.

. Astuti, R., Lapian, J., Rate, P. Van, 2016. Pengaruh Faktor Makro Ekonomi terhadap Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia (BEI) Periode 2006-2015. Jurnal Berkala Ilmiah Efisiensi, Vol. 16, No. 2, 399–406.

. Banun Afa, I., Rahmawati, R., Statistika, D., & Sains dan Matematika, F., 2018. Pemodelan Indeks Harga Saham Gabungan Menggunakan Regresi Spline Multivariabel. JURNAL GAUSSIAN, Vol. 7, No. 3, 260–269.

. Berry, L. N., & Helwig, N. E., 2021. Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines. Stats (Basel), Vol. 4, No. 3, 701–724.

. Chamidah, N., Rifada, M., & Amelia, D., 2022. A Theoretical Discussion on Modeling the Number of Covid-19 Death Cases Using Penalized Spline Negative Binomial Regression Approach. Communications in Mathematical Biology and Neuroscience.

. Endang, S., Wahono, B., & Salim, M. A., 2019. Pengaruh Variabel Ekonomi Makro terhadap Indeks Harga Saham Gabungan di Bursa Efek Indonesia Periode Tahun 2014-2016. E-Jurnal Riset Manajemen.

. Eubank, R. L., 1999. Nonparametric Regression and Spline Smoothing. CRC Press.

. Griggs, W., 2013. Penalized Spline Regression and its Applications.

. Gulo, V. I. S., Subiyantoro, H., & Tobing, W. R. L., 2017. Analisis Pengaruh Variabel Makroekonomi dan Volume Perdagangan Saham terhadap Indeks Harga Saham Gabungan di Bursa Efek Indonesia: Pendekatan Dua Model Penelitian Pengaruh Gaya. Jurnal Eksekutif, Vol. 4, No. 1.

. Harsono, A., & Worokinasih, S. (2018). Pengaruh Inflasi, Suku Bunga, dan Nilai Tukar Rupiah erhadap Indeks Harga Saham Gabungan. Jurnal Administrasi Bisnis, 60(2), 102–110.

. Kameela, M., 2023. Penerapan Metode Arimax-Garch Dalam Meramalkan Indeks Harga Saham Gabungan (IHSG).

. Kurniasari, C. C., Pratiwi, Y. E., & Lasianti, S. D., 2023. Pengaruh Kenaikan Suku Bunga the Fed, Harga Minyak Dunia terhadap IHSG dalam Pergerakan Pasar Modal. Jurnal Penelitian Ekonomi Akuntansi (JENSI), Vol. 7, No. 2, 333–347.

. Kurniasari, W., Kusnandar, D., & Sulistianingsih, E., 2019. Estimasi Parameter Regresi Spline Dengan Metode Penalized Spline. Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, Vol. 8, No. 2.

. Maharani, M., & Saputro, D. R. S., 2021. Generalized Cross Validation (GCV) in Smoothing Spline Nonparametric Regression Models. IOP Conference Series: Earth and Environmental Science, Vol. 1808, No. 2.

Downloads

Published

2024-05-15

How to Cite

Octavia, D. H., Auliarani, A., Siswanto, S., & Kalondeng, A. (2024). Modeling Determinants of Composite Stock Price Index Based on Multivariable Nonparametric Penalized Spline Regression Model alized Spline. Jurnal Matematika, Statistika Dan Komputasi, 20(3), 497-512. https://doi.org/10.20956/j.v20i3.32145

Issue

Section

Research Articles

Most read articles by the same author(s)