Controlled g-frames and their dual in Hilbert $C^{\ast}-$modules

Authors

  • Abdelilah Karara
  • Mohamed Rossafi Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, Fes,
  • Samir Kabbaj

DOI:

https://doi.org/10.20956/j.v20i1.26361

Keywords:

g-frame, controlled g-frame, $C^{\ast}$-algebras, Hilbert $C^{\ast}$-modules

Abstract

In this paper we give some new results for controlled g-frames and controlled dual g-frames in Hilbert $C^*$-modules. First, we talk about controlled g-frame characterisation and find certain conditions that are equal to them.Then, we explain the purpose controlled dual g-frames and controlled dual g-frames operator and discuss some of their characteristics.

Downloads

Download data is not yet available.

References

Balazs P, Antoine J. P, Grybos A, 2010. Weighted and controlled frames, Int. J. Wavelets Multiresolut. Inf.

Process., 8(1) 109-132.

Christensen O, 2016. An Introduction to Frames and Riesz bases, Birkhauser.

Conway J. B, 2000. A Course In Operator Theory, Am. Math. Soc., Providence, RI.

Daubechies I, Grossmann A, Meyer Y, 1986. Painless nonorthogonal expansions, J. Math. Phys. 27, 1271{

Dun R. J, Schae er A. C, 1952. A class of nonharmonic fourier series, Trans. Am. Math. Soc. 72, 341{366.

Hua D, Huang Y, 2017. Controlled K - g-frames in Hilbert spaces, Results in Math., 72(3), 1227-1238.

Jing W, 2006. Frames in Hilbert C*-modules, Doctoral Dissertation.

Kabbaj S, Rossa M, 2018. -operator Frame for End

A(H), Wavelet Linear Algebra, 5, (2), 1-13.

Kaplansky I, 1953. Modules over operator algebras, Am. J. Math. 75, 839{858.

Khorsavi A, Khorsavi B, 2008. Fusion frames and g-frames in Hilbert C-modules, Int. J. Wavelet, Multiresolution

and Information Processing 6, 433-446. Doi: doi.org/10.1142/S0219691308002458

Kouchi M. R, Rahimi A, 2017. On controlled frames in Hilbert C*-modules, Int. J. Walvelets Multi. Inf.

Process., 15(4), 1750038.

Lance E. C, 1995. Hilbert C*-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture

Note Ser., vol. 210, Cambridge Univ. Press.

Rossa M, Kabbaj S, 2020. -K-operator Frame for End

A(H), Asian-Eur. J. Math. 13, 2050060.

Xiao X. C, Zeng X. M, 2010. Some properties of g-frames in Hilbert C*-modules, J. Math. Anal. Appl., 363,

-408.

Sahu N. K, 2021. Controlled g-frames in Hilbert C*-modules, Mathematical Analysis and its Contemporary

Applications Volume 3, Issue 3, 65{82.

Sun W, 2006. G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, no 1, 437-452.

Downloads

Published

2023-09-06

How to Cite

Karara, A., Rossafi, M., & Kabbaj, S. (2023). Controlled g-frames and their dual in Hilbert $C^{\ast}-$modules. Jurnal Matematika, Statistika Dan Komputasi, 20(1), 10-23. https://doi.org/10.20956/j.v20i1.26361

Issue

Section

Research Articles

Most read articles by the same author(s)