Some new properties of g-frame in Hilbert C*-modules
DOI:
https://doi.org/10.20956/j.v18i3.20288Keywords:
Frame, modular Riesz basis, modular $g$-Riesz basis, $C^{\ast}$-algebra, Hilbert $\mathcal{A}$-modulesAbstract
The theory of frames which appeared in the last half of the century, has been generalized rapidly and various generalizations of frames in Hilbert spaces and Hilbert $C^{\ast}$-modules. In this paper, we will give some new properties of modular Riesz basis and modular $g$-Riesz basis that present a generalization of the results established in a Hilbert space.Downloads
References
bibitem{alijani} A. Alijani and M. A. Dehghan, emph{$ast$-frames in Hilbert $C^{ast}$-modules}, U.P.B. Sci. Bull, Ser. A, vol. 73, no. 4, pp. 89-106, 2011.
bibitem{Ara} L. Arambav{s}i'{c}, emph{On frames for countably generated Hilbert $mathcal{C}^{ast}$-modules}, Proc. Amer. Math. Soc., vol. 135, pp. 469-478, 2007.
bibitem{13} I. Daubechies, A. Grossmann, and Y. Meyer, emph{Painless nonorthogonal expansions}, J. Math. Phys., vol. 27, pp. 1271-1283, 1986.
bibitem{Duf} R. J. Duffin and A. C. Schaeffer, "A class of nonharmonic fourier series", emph{Trans. Amer. Math. Soc.}, vol. 72, pp. 341-366, 1952.
bibitem{F4} M. Frank, D. R. Larson, emph{Frames in Hilbert $mathcal{C}^{ast}$-modules and $mathcal{C}^{ast}$-algebras}", J. Oper. Theory, vol. 48, pp. 273-314, 2002.
bibitem{Gab} D. Gabor, emph{Theory of communications}, J. Elec. Eng., vol. 93, pp. 429-457, 1946.
bibitem{Pas} W. Paschke, emph{Inner product modules over $B^{ast}$-algebras}, Trans. Amer. Math. Soc., vol. 182, pp. 443-468, 1973.
bibitem{AB} A. Khorsavi, B. Khorsavi, emph{Fusion frames and g-frames in Hilbert $mathcal{C}^{ast}$-modules}, Int. J.Wavelet, Multiresolution
and Information Processing 6 (2008), pp. 433-446.
bibitem{GFR} Zhong-Qi Xiang and Yong-Ming Li, emph{$G$-frames for operators in Hilbert $C^{ast}$-modules}, Turkish Journal of Mathematics, vol 40, pp. 453-469, 2016.
bibitem{AAA} A. Khosravi and M. R. Farmani, Frames and $g$-frame in Hilbert Spaces, Mathematics and computational sciences, Vol 3(1), pp.10-16, 2022.
bibitem{BBB} A. Khosravi and B. Khosravi, $g$-frames and modular Riesz basis in Hilbert $C^{ast}$-modules, International Journal of Wavelets, Multirsolution and Information Processing, Vol 10, No. 2, 12 pages, 2012.
bibitem{DHW} Deguan Han, Wu Jing, David Larson, Ram N. Mohapatra, Riesz Bases and their dual mudular frames in Hilbert $C^{ast}$-modules, Mathematical Analysis and Applications, Vol 343 , pp. 246-256, 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.