Application of Double Exponential Smoothing Holt and Triple Exponential Smoothing Holt-Winter with Golden Section Optimization to Forecast Export Value of East Borneo Province
DOI:
https://doi.org/10.20956/j.v18i3.17492Keywords:
Eksport, forecasting, golden section, Holt’s double exponential smoothingAbstract
Exponential smoothing is one of the short term forecasting methods. The selection of the forecasting method can be done by considering the type of data pattern, such as the Double Exponential Smoothing (DES) Holt method which can be used on trend patterned data and the Triple Exponential Smoothing (TES) Holt-Winter method which can be used on trend and seasonal patterned data. The main problem in using the Holt DES and Holt-Winter TES methods is the parameter selection which is usually done by trial and error, but this method takes a long time so that in this research a more efficient method is used to obtain optimal parameters, namely the golden section method. The purpose of this research was to forecast and obtain the best method for forecasting the export value of East Borneo Province. The results showed that the forecasted of export values used the Holt DES, the additive Holt-Winter TES, and the multiplicative Holt-Winter TES with golden section optimization method had a MAPE of less than 10%, which means that the forecast used these methods were very good. The best method to predict the export value of East Borneo Province was the additive Holt-Winter TES with golden section optimization method.Downloads
References
Fitria, V.A., 2018. Parameter Optimization of Single Exponential Smoothing Using Golden Section Method for Groceries Forecasting. Jurnal Sains, Matematika, dan Terapan, Vol.4, No.2, 89-97.
Hamidah, S.N., Salam, N., & Susanti, D.S., 2017. Teknik Peramalan Menggunakan Metode Pemulusan Eksponensial Holt-Winters. Jurnal Matematika Murni dan Terapan “Epsilon”, Vol.7, No.2, 26-33.
Jaluria, Y., 2020. Design and Optimalization of Thermal System, Third Edition, With MATLAB Application. New York: CRC Press.
Kiusalaas, J., 2005. Numerical Methods in Engineering with MATLAB. United States of America : Cambridge University.
Makridakis, S., Wheelwright, S.C., & McGee, V.E., 1999. Metode dan Aplikasi Peramalan, Jilid 1. Jakarta : Binarupa Aksara.
Prihatmono, M.W & Utami, E., 2017. Analysis of Moving Average and Holt-Winters Optimization by Using Golden Section for Ritase Forecasting. Journal of Theoretical and Applied Information Technology, Vol.95, No.23, 6575-6584.
Purba, A., 2015. Perancangan Aplikasi Peramalan Jumlah Calon Mahasiswa Baru yang Mendaftar Menggunakan Metode Single Exponential Smoothing (Studi Kasus : Fakultas Agama Islam UISU). Jurnal Riset Komputer, Vol.2, No.6, 8-12.
Sinaga, H.D.E & Irawati, N., 2018. Perbandingan Double Moving Average dengan Double Exponential Smoothing pada Peramalan Bahan Medis Habis Pakai. Jurnal Teknologi dan Sistem Informasi, Vol.4, No.2 197-204.
Yeng, F.F., Suhaimi, A., & Yoke, S.K., 2020. Golden Exponential Smoothing: A Self-Adjusted Method for Identifying Optimum Alpha. Malaysian Journal of Computing, Vol.5, No.2, 587-596.
Yuwida, N., Hanafi, L., & Wahyuningsih, N., 2012. Estimasi Parameter α dan γ dalam Pemulusan Eksponensial Ganda Dua Parameter dengan Metode Golden Section. Jurnal Sains dan Seni ITS, Vol.1, No.1, A18-A22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.