Nickel acquisition affected by root density of mono- and mixed-cropping peanut and choy sum
Downloads
Downloads
Agboola, D.A., Ogunyale, O.G., Fawibe, O.O., & Ajiboye, A.A. (2014). A review of plant growth substances: Their forms, structures, synthesis and functions. Journal of Advanced Laboratory Research in Biology, 5(4), 152-168.
Batool, S. (2018). Effect of Nickel Toxicity on Growth, Photosynthetic Pigments and Dry Matter Yield of Cicer Arietinum L. Varieties. Asian Journal of Agriculture and Biology, 6(2), 143-148.
Shridhar Rao, J., Vadez, V., Bhatnagar-Mathur, P., Narasu, M. L., & Sharma, K. K. (2012). Better root: shoot ratio conferred enhanced harvest index in transgenic groundnut overexpressing the rd29A: DREB1A gene under intermittent drought stress in an outdoor lysimetric dry-down trial. Journal of SAT Agricultural Research, 10, 1-7. http://oar.icrisat.org/id/eprint/6249.
Brown, P. H., Welch, R. M., & Cary, E. E. (1987). Nickel: A micronutrient essential for higher plants. Plant physiology, 85(3), 801-803. https://doi.org/10.1104/pp.85.3.801
Cai, X., Qiu, R., Chen, G., Zeng, X., & Fang, X. (2007). Response of microbial communities to phytoremediation of nickel contaminated soils. Frontiers of Agriculture in China, 1(3), 289–95. https://doi.org/10.1007/s11703-007-0049-0.
Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. https://doi.org/10.3389/fpls.2019.00157.
Chiarucci, A., & Baker, A. J. (2007). Advances in the ecology of serpentine soils. Plant and Soil, 293, 1-2. https://doi.org/10.1007/s11104-007-9268-7.
Doreswamy, K., Shrilatha, B., Rajeshkumar, T., & Muralidhara. (2004). Nickel‐induced oxidative stress in testis of mice: evidence of DNA damage and genotoxic effects. Journal of andrology, 25(6), 996-1003. https://doi.org/10.1002/j.1939-4640.2004.tb03173.x.
Feng, J., Lv, W., Xu, J., Huang, Z., Rui, W., Lei, X., Ju, X., & Li, Z. (2022). Overlapping Root Architecture and Gene Expression of Nitrogen Transporters for Nitrogen Acquisition of Tomato Plants Colonized with Isolates of Funneliformis mosseae in Hydroponic Production. Plants, 11, 1176. https://doi.org/10.3390/ plants11091176
Goldberg, D.E., & Fleetwood, L. (1987). Competitive effect and response in four annual plants. The Journal of Ecology, 75(4), 1131-1143. https://doi.org/10.2307/2260318.
Gopal, R. (2014). Excess nickel modulates oxidative stress responsive enzymes in groundnut. Journal of Plant Nutrition, 37(9), 1433-1440. https://doi.org/10.1080/01904167.2014.881872.
Herz, K., Dietz, S., Gorzolka, K., Haider, S., Jandt, U., Scheel, D., & Bruelheide, H. (2018). Linking root exudates to functional plant traits. PloS one, 13(10), e0204128. https://doi.org/ 10.1371/journal.pone.0204128.
Isaac, M.E., & Borden, K.A. (2019). Nutrient acquisition strategies in agroforestry systems. Plant and Soil, 444, 1-19. https://doi.org/10.1007/s11104-019-04232-5.
Ismail, M.R., & Davies, W.J. (1998). Root restriction affects leaf growth and stomatal response: the role of xylem sap ABA. Scientia Horticulturae, 74(4), 257-268. https://doi.org/10.1016/S0304-4238(98)00090-9.
Jiao, Y., Wang, E., Chen, W., & Smith, D.L. (2017). Complex interactions in legume/cereal intercropping system: role of root exudates in root-to-root communication. BioRXiv, 097584. https://doi.org/10.1101/097584.
Kawasaki, A., Donn, S., Ryan, P.R., Mathesius, U., Devilla, R., Jones, A., & Watt, M. (2016). Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PloS one, 11(10), e0164533. https://doi.org/ 10.1371/journal.pone.0164533.
Kharkina, T. G., Ottosen, C. O., & Rosenqvist, E. (1999). Effects of root restriction on the growth and physiology of cucumber plants. Physiologia Plantarum, 105(3), 434-441. https://doi.org/10.1034/j.1399-3054.1999.105307.x.
Li, H., Testerink, C., & Zhang, Y. (2021). How roots and shoots communicate through stressful times. Trends in plant science, 26(9), 940-952. https://doi.org/10.1016/j.tplants.2021.03.005.
Murphy, G.P., File, A.L., & Dudley, S.A. (2013). Differentiating the effects of pot size and nutrient availability on plant biomass and allocation. Botany, 91(11), 799-803. https://doi.org/10.1139/cjb-2013-0084.
Pirmana, V., Alisjahbana, A. S., Yusuf, A. A., Hoekstra, R., & Tukker, A. (2023). Economic and environmental impact of electric vehicles production in Indonesia. Clean Technologies and Environmental Policy, 1-15. https://doi.org/10.1007/s10098-023-02475-6.
Puig, J., Pauluzzi, G., Guiderdoni, E., & Gantet, P. (2012). Regulation of shoot and root development through mutual signaling. Molecular Plant, 5(5), 974-983. https://doi.org/10.1093/mp/sss047.
Rahayu, Y.S., Walch-Liu, P., Neumann, G., Römheld, V., von Wirén, N., & Bangerth, F. (2005). Root-derived cytokinins as long-distance signals for NO3−-induced stimulation of leaf growth. Journal of experimental botany, 56(414), 1143-1152. https://doi.org/10.1093/jxb/eri107.
Revindo, M.D., & Alta Aditya, A. (2020). Trade and Industry Brief. Seri Analisis Ekonomi. LPEM, Universitas Indonesia. (January).
Rubio, G., Walk, T., Ge, Z., Yan, X., Liao, H., & Lynch, J. P. (2001). Root gravitropism and below-ground competition among neighbouring plants: a modelling approach. Annals of Botany, 88(5), 929-940. https://doi.org/10.1006/anbo.2001.1530.
Saad, R., Kobaissi, A., Robin, C., Echevarria, G., & Benizri, E. (2016). Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: a pre-requisite for optimization of agromining. Environmental and Experimental Botany, 131, 1-9. https://doi.org/10.1016/j.envexpbot.2016.06.010.
Shahzad, B., Tanveer, M., Rehman, A., Cheema, S. A., Fahad, S., Rehman, S., & Sharma, A. (2018). Nickel; whether toxic or essential for plants and environment-A review. Plant Physiology and Biochemistry, 132, 641-651. https://doi.org/10.1016/j.plaphy.2018.10.014.
Sierra, J., & Desfontaines, L. (2009). Role of root exudates and root turnover in the below-ground N transfer from Canavalia ensiformis (jackbean) to the associated Musa acuminata (banana). Crop and Pasture Science, 60(3), 289-294. https://doi.org/10.1071/CP08215.
Someya, N., Sato, Y., Yamaguchi, I., Hamamoto, H., Ichiman, Y., Akutsu, K., Sawada, H., & Tsuchiya, K. (2007). Alleviation of nickel toxicity in plants by a rhizobacterium strain is not dependent on its siderophore production. Communications in soil science and plant analysis, 38(9-10), 1155-1162. https://doi.org/10.1080/00103620701328040.
Stampatori, D., Raimondi, P.P., & Noussan, M. (2020). Li-ion batteries: A review of a key technology for transport decarbonization. Energies, 13(10), 2638. https://doi.org/10.3390/en13102638.
Wallace, A., & Romney, E.M. (1980). Interactions of nitrogen sources and excess nickel on bush beans. Journal of Plant Nutrition, 2(1-2), 75-78. https://doi.org/10.1080/01904168009362739.
Wheeldon, C.D., & Bennett, T. (2021). There and Back Again: An Evolutionary Perspective on Long-Distance Coordination of Plant Growth and Development. Seminars in Cell & Developmental Biology, 109, 55–67. https://doi.org/10.1016/j.semcdb.2020.06.011.
Wilson, J. B. (1988). Shoot competition and root competition. Journal of Applied Ecology, 25(1), 279–96. https://doi.org/10.2307/2403626.
Yu, X.M., Li, J.F., Zhu, L.N., Bo, W.A.N.G., Lei, W.A.N.G., Yang, B.A.I., Zhang, C.X., Xu, W.P., & WANG, S.P. (2015). Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.× Vitis labrusca L.). Journal of Integrative Agriculture, 14(1), 67-79. https://doi.org/10.1016/S2095-3119(14)60876-5.
Zaidi, A., & Khan, S. (2005). Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. Journal of plant Nutrition, 28(12), 2079-2092. https://doi.org/10.1080/01904160500320897.
Zeng, R.S., Mallik, A.U., & Setliff, E. (2003). Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants: role of degraded compounds of indole glucosinolates. Journal of chemical ecology, 29(6), 1337-1355. DOI: 10.1023/A:1024257218558.