Karakteristik Suara Gelembung Air Laut yang dikeluarkan Ikan Layang (Decapterus Sp) dapat dijadikan Atraktor Berbasis Suara Pada Areal Rumpon
Keywords:
Karakteristik suara, gelembung air laut, layang (Decapterus sp), rumpon, atraktorAbstract
Rumpon mampu menarik spesies ikan untuk berasosiasi dengannya. Banyak pertanyaan terkait kinerja rumpon itu sendiri, salah satunya adalah karakteristik suara yang ada dibawah rumpon tersebut. Spesies ikan pelagis yang umumnya tertangkap pada areal rumpon adalah Ikan Layang (Decapterus sp). Umumnya memproduksi suara gelembung air laut. Pertanyaannya apakah gelembung air laut tersebut sebagai bentuk komunikasi dilaut. untuk saling berinteraksi, mempertahankan diri atau menghindar dari predator? Tujuan penelitian adalah mengidentifikasi karakteristik suara dikeluarkan oleh schooling ikan yang berasosiasi pada areal rumpon, mekanisme produksi suara gelembung air laut dan hubungan antara karakteristik suara dengan terkosentrasinya schooling ikan yang kemungkinan bisa dijadikan atraktor berbasis gelombang bunyi untuk menarik schooling ikan mendekati areal rumpon. Parameter yang diamati adalah bentuk karakteristik dan mekanisme produksi suara dibawah rumpon, mekanisme produksi suara, bentuk karakteristik frekuensi gelembung air laut dan pengaruhnya terhadap schooling ikan khususnya schooling layang. Jenis penelitian metode observasi dengan pendekatan akustik pasif (PAM). Hasil menunjukkan bahwa ikan layang teridentifikasi mengeluarkan gelembung air laut saat terkosentrasi penuh dibawah rumpon pada dini hari, kondisi kaget dan kondisi ada ikan predator datang menyerang, peak frekuensi suara gelembung air laut rata-rata pada kisaran 583,90 Hz sedangkan tekanan suara yaitu rata-rata pada kisaran 86 dB. Temuan tersebut sesuai dengan sensitivitas maksimum dan minimum pendengaran ikan pada umumnya, sehingga karakteristik suara gelembung air laut memungkinkan pengembangan atraktor berbasis gelombang suara untuk menarik dan mengkonsentrasikan spesies ikan tertentu pada areal rumpon.Downloads
References
Albert JA, Beare D, Schwarz A, Albert S, Warren R, Teri J, Andrew NL. 2014. The contribution of nearshore Fish Aggregating Devices (FADs) to food security and livelihoods in solomon islands. Plos One 9 (12): 1-19 . DOI: 10.1371/journal.pone.0115386
Arrizabalaga H, Dufour F, Kell L, Merino G, Ibaibarriaga L, Chust G, Irigoien X, Santiago J, Murua H, Fraile I, Chifflet M, Goikoetxea N, Sagarminaga, Yolanda, Olivier A, Laurent B, Miguel H, Fromentin JM, Bonhomeau, Sylvain. 2015. Global habitat preferences of commercially valuable tuna. Deep Sea-Res Part II 113: 102-112. DOI: 10.1016/j.dsr2.2014.07.001
Atema J, Holland K, Ikehara W. 1980. Olfactory responses of yellowfin tuna (Thunnus albacares) to prey odors: chemical search image. J Chem Ecol 6:457–465 DOI: 10.1007/BF01402922
Au, WWL, Hastings, MC, 2009. Emission of Social Sounds by Marine Animals. Principles of Marine Bioacoustics. Springer, New York, pp. 401–499
Babaran, R.P., Anraku, K., Ishizaki, M., Watanabe, K., Matsuoka, T., Shirai, H., 2008. Sound generated by a payao and comparison with auditory sensitivity of jack mackerel Trachurus japonicus. Fisheries Science 74, 1207–1214. DOI:10.1002/9780813810966.ch3
Bubun RL, Domu S, Wiji NT, Wisudo H. 2015. Terbentunya daerah penangkapan dengan Pencahayaan. Jurnal Airaha 4(1),27–36. DOI: 10.29244/jmf.5.1.57-76 [Indonesia]
Capello. M, Soria.M, Cotel.P, Potin.G, Dagorn.L, Preon.P. 2012. “The Heterogeneous Spatial And Temporal Patterns Of Behavior Of Small Pelagic Fish In An Array Of Fish Aggregating Devices (FADs). J Exp Mar Biol. Ecol 430–431: 56–62. DOI: 10.1016/j.jembe.2012.06.022
Capello M, Deneubourg JL, Robert M, Holland KN, Schaefer KM, Dagorn L. 2016. Population assessment of tropical tuna based on their associative behavior around floating objects. Sci Rep 6 (1): 36415. DOI: 10.1038/srep36415
Carriço R, Silva MA, Menezes GM, Fonseca PJ, Amorim MCP. 2019. Characterization of the acoustic community of vocal fishes in the Azores. PeerJ 7(8):e7772 DOI:10.7717/peerj.7772
Cody CEL, Moreno G, Restrepo V, Roman MH, Maunder MN. 2018. Recent purse-seine FAD fishing strategies in the eastern Pacific Ocean: What is the appropriate number of FADs at sea ? ICES J Mar Sci 75 (5): 1748-1757. DOI: 10.1093/icesjms/fsy046
Dagorn, L., Holland, K., Itano, D., 2007. Behavior of yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna in a network of fish aggregating devices (FADs). Marine Biology 151, 595–606
Dagorn L, Bez N, Fauvel T, Walker E. 2013. How much do fish aggregating devices (FADs) modify the floating object environment in the ocean? Fish Oceanogr 22 (3): 147-153. DOI: 10.1111/fog.12014
Dempster T, Kingsford M. 2003. Homing of pelagic fish to fish aggregation devices (FADs): The role of sensory cues. Marine Ecology Progress Series 258:213-222. DOI:10.3354/meps258213
Dempster T, Taquet M. 2004. Reviews In Fish Biology And Fisheries Fish Aggregation Device (FADs) Research: Gaps In Current Knowledge And Future Directions For Ecological Studies. DOI: 10.1007/s11160-004-3151-x
Doving K, Stabell OB. 2003. Trails in open water: sensory cues in salmon migration. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer-Verlag, New York, p 39–52. DOI: 10.1007/978-0-387-22628-6_2
Ghazali SM, Montgomery JC, Jeffs AG, Ibrahim Z, Radford CA. 2013. The diel variation and spatial extent of the underwater sound around a fish aggregation device (FAD). Fisheries Research 148 (2013) 9– 17. DOI: 10.1016/j.fishres.2013.07.015
Ghufron, M. Z., Triarso, I., & Kunarso, K. 2019. Analysis of the Relationship of Sea Surface Temperature and Chlorophyll-a The Suomi NPP VIIRS Satellite Image Against the Catch of the Seine Purse in PPN Pengambengan, Bali). Indonesian Journal Of Fisheries Science And Technology, 14(2), 128-135. DOI: https://doi.org/10.14710/ijfst.14.2.128-135
Irawati A, Baso A, Najamuddin. 2021. Bioeconomic analysis of Indian Scad (Decapterus ruselli) in the Bone bay Waters of South Sulawesi. Intl J Environ Agric Biotechnol 6 (1). DOI:10.22161/ijeab.61.15
Kasumyan, A., 2008. Sounds and sound production in fishes. Journal of Ichthyology 48, 981–1030. DOI:10.1134/S0032945208110039
Lezama ON, Murua, H, Chust, G, Ruiz J, Chavance P, De Molina AD. 2015. Biodiversity in the by-catch communities of the pelagic ecosystem in the Western Indian Ocean. Biodivers. Conserv. 24, 2647–2671. DOI: 10.1007/s10531-015-0951-3
Lopez J, Moreno G, Lennert-Cody C, Maunder M., Sancristobal I, Caballero A et al, 2017. Environmental preferences of tuna and non-tuna species associated with drifting fish aggregating devices (DFADs) in the Atlantic Ocean, ascertained through fishers’ echo-sounder buoys. Deep Sea Res. II Top. Stud. Oceanogr.140,127–138. DOI: 10.1016/j.dsr2.2017.02.007
Manna G, Picciulin M, Crobu A, Perretti F, Ronchetti F, Manghi M, Ruiu A, Ceccherelli G. 2021. Marine soundscape and fish biophony of a Mediterranean marine protected area.PeerJ 9:e12551 DOI 10.7717/peerj.12551
Nurdin.E, Mamun.A, Alfi.MF, Baskoro.MS. 2019. “Schooling Of yellowfin Tuna (Thunnus Albacares) Around Fads Erfind.” Indonesian Fisheries Research Journal 25(1): 35. https://www.academia.edu/40089320
Orue B, Lopez J, Moreno G, Santiago J, Soto M, Murua H. 2019. Aggregation process of drifting fish Aggregating Devices (DFADs) in the western Indian Ocean: Who arrives first, tuna or non-tuna species? Plos One 14 (1): 1-24. DOI: 10.1371/journal.pone.0210435
Popper AN, Fay RR, Platt C, Sand O. 2003. Sound detection mechanisms and capabilities of teleost fishes. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer-Verlag, New York, p 3–38. DOI: 10.1007/978-0-387-22628-61
Radford, CA, Jeffs, AG, Tindle, CT, Montgomery, JC, 2008. Temporal patterns in ambient noise of biological origin from a shallow water temperate reef. Oecolo gia 156, 921–929
Rogers, PH, Cox, M., 1988. Underwater sounds as a biological stimulus. In: Atema, J., Fay, RR, Popper,AN, Tavolga,WNS(Eds.), Sensory Biology ofAquaticAnimals. Springer, New York, pp. 131–149.
Rosana, Suryadhi, S Rifandi, MA Sofijanto, (2018). Rancang Bangun Dan Uji Coba Alat Pemanggil Ikan “Piknet” Untuk Alat Tangkap Jaring Insang. Marine Fisheries 9(2)
Rumpa A, Isman K. 2018. Desain purse seine yang ideal Berdasarkan tingkah laku ikan layang (Decapterus macarellus) dan ikan tongkol deho (Auxis thazard) di Rumpon. Prosiding Simposium Nasional Kelautan dan Perikanan V. Universitas Hasanuddin, Makassar.
Rumpa A, Najamuddin, Safruddin, Hajar MAI. 2022a. Studying the relationship of immersion duration and characteristics of natural materials fad to fish aggregation in the sea, Biodiversitas. 23(10): 5481-5490. DOI: 10.13057/biodiv/d231060
Rumpa A, Najamuddin, Safruddin, Hajar MAI. 2022b. Fish behavior based on the effect of variations in oceanographic condition variations in FADs Area of Bone Bay Waters, Sulawesi, Indonesia. Biodiversitas. 23(4). DOI: 10.13057/biodiv/d230421
Seloi, A, Malik, F.I. Yani, Mallawa.A, Safruddin.2019. Remote Chlorophyll-a and SST to Determination of Fish Potential Area in Makassar Strait Waters Using MODIS Satellite Data. IOP Conference Series : earth and environmental science. Volume 270. Hal. 1-13. DOI:10.1088/1755-1315/270/1/012047
Taquet M, Sancho G, Dagorn L, Gaertner JC, Itano D, Aumeeruddy R, Wendling B, Peignon C. 2007. Characterizing fish communities associated with drifting fish aggregating devices ( FADs) in the Western Indian Ocean using underwater visual surveys. Aquatic Living Resources, 20(4): 331–41. DOI: 10.1051/alr:2008007
Wudianto, Widodo AN, Mahiswara. 2019. Kajian pengelolaan rumpon laut dalam sebagai alat bantu Penangkapan tuna di perairan indonesia. Journal Of Indonesian Fisheries Policy, 11(1), 23–37. DOI: 10.15578/jkpi.1.1.2019.23-37 [Indonesia]
Yusfiandayani R, Baskoro MS, Monintja D. 2015. Impact of fish aggregating device on sustainable capture fisheries. The 1st International Symposium on Aquatic Product Processing.. DOI:10.18502/kls.v1i0.107