OPTIMASI METODE EKSTRAKSI BERBANTU MIKROWAVE DENGAN PELARUT HIJAU (ASAM SITRAT-GLUKOSA) TERHADAP KADAR POLIFENOL TOTAL DARI DAUN KADAMBA (Mitragyna speciosa Korth. Havil) MENGGUNAKAN RESPONSE SURFACE METHODOLOGY

Article History

Submited : February 23, 2020
Published : July 1, 2020

Kadamba (Mitragyna speciosa Korth Havil) merupakan salah satu tumbuhan endemik di Asia Tenggara, di Indonesia, tumbuhan ini banyak di jumpai di pulau Kalimantan. Tumbuhan ini dipercaya oleh masyarakat dapat mengobati berbagai macam penyakit. Namun, karena kandungan alkaloidnya, tumbuhan ini dilarang digunakan sebagai bahan baku obat herbal oleh Badan Pengawas Obat dan Makanan. Oleh karena itu, perlu dilakukan pengembangan metode ekstraksi untuk menarik senyawa metabolit sekunder target dan meminimalkan senyawa yang tidak diinginkan yaitu dengan menggunakan metode ekstraksi berbantu mikrowave dengan pelarut hijau (Natural Deep Eutectic Solvent) yang dioptimasi menggunakan response surface methodology (RSM). Simplisia kering daun Kadamba diekstraksi menggunakan metode ekstraksi berbantu mikrowave dengan pelarut hijau (asam sitrat-glukosa) dengan berbagai kondisi ekstraksi dengan empat faktor dan tiga level (Box Behnken Design) yang dioptimasi menggunakan RSM dengan aplikasi perangkat lunak Design Expert versi 12 berlisensi. Penetapan kadar polifenol total dilakukan menggunakan reagen Folin-Ciocalteau dan diukur absorbansinya pada spektrofotometer UV-Vis pada panjang gelombang 770 nm, serta asam gallat sebagai standar. Berdasarkan hasil penelitian, diperoleh kondisi optimum pada perbandingan rasio pelarut NADES (asam sitrat : glukosa) 5:1 g/g, rasio pelarut-sampel sebesar 1:20 g/mL, waktu ekstraksi selama 20 menit dan kekuatan gelombang mikro sebesar 30% dengan kadar polifenol total prediksi sebesar 314,924 ±35,95 mg GAE/g sampel, sedangkan dari hasil proses verifikasi (scale-up confirmation) yaitu dengan meningkatkan jumlah sampel yang digunakan sebanyak sepuluh kali lipat dengan Kadar polifenol total diperoleh  sebesar 427,12 ±35,95 mg GAE/g. Penelitian ini merupakan langkah awal dalam pengembangan metode ekstraksi untuk memperoleh senyawa target secara cepat, mudah, efisien, dan ramah lingkungan.

References

  1. Hassan Z, Muzaimi M, Navaratnam V, Yusoff NHM, Suhaimi FW, Vadivelu R, Vicknasingam BK, Amato D, von Horsten S, Ismail NIW, Jayabalan N, Hazim AI, Mansor SM, Muller CP. From Kratom to mitragynine and its derivatives: Physiological and behavioural effects related to use, abuse, and addiction. Neuroscience and Biobehavioral Revies. 2013;37(2):138–51.
  2. Raini M. Kratom (Mitragyna speciosa Korth): Manfaat , Efek Samping dan Legalitas. Media Litbangkes. 2017;27(3):175–84.
  3. Singh D, Narayanan S, Vicknasingam B. Traditional and non-traditional uses of Mitragynine (Kratom): A survey of the literature. Brain Research Bulletin, 2016;126:41–6.
  4. Ikhwan D, Harlia, Widiyantoro A. Karakterisasi senyawa sitotoksik dari fraksi etil asetat daun Kratom (Mitragyna speciosa Korth.) dan aktivitasnya terhadap sel kanker payudara T47D. Jurnal Kimia Khatulistiwa. 2018;7(2):18–24.
  5. Gomez FJ V, Espino M. A greener approach to prepare natural deep eutectic solvents. Analytical Chemistry. 2018;3:6122–5.
  6. Ahmad I, Pertiwi AS, Kembaren YH, Rahman A, Mun’in A. Application of natural deep eutectic solvent-based ultrasonic assisted extraction of total polyphenolic and caffeine content from Coffe Beans (Coffea Beans L .) for instant food products. Journal of Applied Pharmaceutical Sciences. 2018;8(8):138–43.
  7. Dordevic BS, Todorovic ZB, Troter DZ, Stanojevic LP. The extraction of quercetin from waste onion (Allium cepa L) tunic by the aquous solutions of different deep eutectic solvents. Advanced Technologies. 2018;7(2):5–10.
  8. Alishlah T, Mun’in A, Jufri M. Optimization of urea-glycerin based NADES-UAE for oxyresveratrol extraction from Morus alba roots for preparation of skin whitening lotion. Journal of Young Pharmacist. 2019;11(2):155–60.
  9. Mulia K, Yoksandi Y, Kurniawan N, Pane IF, Krisanti EA. 1,2-Propanediol-betaine as green solvent for extracting α-mangostin from the rind of mangosteen fruit: Solvent recovery and physical characteristics. Journal of Physic: Conferences Series. 2019;1198(6).
  10. Ahmad I, Yanuar A, Mulia K, Mun’im A. Ionic liquid-based microwave-assisted extraction: Fast and green extraction method of secondary metabolites on medicinal plant. Pharmacognosy Reviews. 2018;12(23):20–6.
  11. Dika F, Riswanto O, Rohman A, Pramono S, Martono S. Application of response surface methodology as mathematical and statistical tools in natural product research. Journal of Applied Pharmaceutical Sciences. 2019;9(10):125–33.
  12. Dai Y, Row KH. Application of natural deep eutectic solvents in the extraction of quercetin from vegetables. Molecules. 2019;24(12).
  13. Dai Y, Jin R, Verpoorte R, Lam W, Cheng YC, Xiao Y, Xu J, Zhang L, Qin XM, Chen S. Natural deep eutectic characteristics of honey improve the bioactivity and safety of traditional medicines. Journal of Ethnopharmacology. 2020;250(December 2019):112460.
  14. Dai Y, Rozema E, Verpoorte R, Choi YH. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A. 2016;1434:50–56.
  15. Dai Y, Witkamp GJ, Verpoorte R, Choi YH. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chemistry. 2015;187:14–19.
  16. Savi L, Dias M, Carpine D, Waszcynskyj N, Ribani R, Haminiuk C. Natural deep eutectic solvents (NADES) based on citric acid and sucrose as a potential green technology : a comprehensive study of water inclusion and its effect on thermal , physical and rheological properties. International Journal of Food Science Technology. 2018;54(3):898–907.
  17. Ahmad I, Yanuar A, Mulia K, Mun A. Optimization of ionic liquid-based micowave-assisted extraction of polyphenolic content from Peperomia pellucida (L) Kunth using response surface methodology. Asian Pacific Journal of Tropical Biomedicine. 2017;7(7):660–665.
  18. Chanioti S, Tzia C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innovative Food Science and Emerging Technology. 2018;48:228–239.
  19. Wang H, Ma X, Cheng Q, Xi X, Zhang L. Deep eutectic solvent-based microwave-assisted extraction of baicalin from Scutellaria baicalensis Georgi. Journal of Chemistry. 2018;2018:1–10.
  20. Xie Y, Liu H, Lin L, Zhao M, Zhang L, Zhang Y, Wu Y. Application of natural deep eutectic solvents to extract ferulic acid from Ligusticum chuanxiong Hort with microwave assistance. RSC Advances. 2019;9(39):22677–84.
  21. Margraf T, Karnopp AR, Rosso ND, Granato D. Comparison between Folin-Ciocalteu and Prussian Blue assays to estimate the total phenolic content of Juices and teas using 96-Well microplates. Journal of Food Science. 2015;80(11):2397–403.
  22. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin – Ciocalteu reagent. Natural Protocol. 2007;2(4):875–7.
  23. Sanchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velasquez DA. The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination Juan. Analytical Methods. 2013;(21):1–10.
  24. Bobo-García G, Davidov-Pardo G, Arroqui C, Marín-Arroyo MR, Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of Science Food and Agriculture. 2014;95(1):204–9.
  25. Filip S, Pavli B, Vidovi S, Vladi J, Zekovi Z. Optimization of microwave-assisted extraction of polyphenolic compounds from Ocimum basilicum by response surface methodology. Food Anaytical Methods. 2017;2017:1–11.
  26. Lu W, Alam MA, Pan Y, Wu J, Wang Z, Yuan Z. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresource Technology. 2016;218:123–128.
  27. Yang L, Li L, Hu H, Wan J, Li P. Natural deep eutectic solvents for simultaneous extraction of multi-bioactive components from jinqi jiangtang preparations. Pharmaceutics. 2019;11(1).
  28. Henningfield JE, Fant R V, Wang DW. The abuse potential of kratom according the 8 factors of the controlled substances act: implications for regulation and research. Pshychopharmacology. 2018;235:573–89.
  29. Apryani E, Hidayat MT, Moklas MAA, Fakurazi S, Idayu NF. Effects of mitragynine from Mitragyna speciosa Korth leaves on working memory. Journal of Ethnopharmacology. 2010;129(3):357–60.
  30. Luliana S, Robiyanto, Islamy MR. Aktivitas Antinosiseptif Fraksi Diklorometana Daun Kratom (Mitragyna speciosa Korth.) rute oral pada mencit jantan Swiss. Pharmaceutical Science and Research. 2018;5(2):58–64.
  31. Parthasarathy S, Azizi J Bin, Ramanathan S, Ismail S, Sasidharan S, Mohd MI, et al. Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (rubiaceae family) leaves. Molecules. 2009;14(10):3964–74.
  32. Mukhriani. Ekstraksi, Pemisahan Senyawa, dan Identifikasi Senyawa Aktif. Kesehatan. 2014;VII NO. 2:7.
  33. Yin-Leng K, Suyin G. Natural deep eutectic solvent (NADES) as a greener alternative for the extraction of hydrophilic (polar) and lipophilic (non-polar) phytonutrients. Key Engineering and Materials. 2019;797:20–8.
  34. Mišan A, Nađpal J, Stupar A, Pojić M, Mandić A, Verpoorte R, Choi YH. The perspectives of natural deep eutectic solvents in agri-food sector. Critical Reviews in Food Science and Nutrition. 2019; 1–29. Available from: https://doi.org/10.1080/10408398.2019.1650717
  35. Liu Y, Friesen JB, McAlpine JB, Lankin DC, Chen SN, Pauli GF. Natural deep eutectic solvents: Properties, Applications, and Perspectives. Journal of Natural Products. 2018;81(3):679–90.
  36. van Osch DJGP, Dietz CHJT, Van Spronsen J, Kroon MC, Gallucci F, van Sint Annaland M, Tuinier R. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustainable Chemistry and Engineering. 2019;7(3):2933–42.
  37. Vanda H, Dai Y, Wilson EG, Verpoorte R, Choi YH. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie. 2018;21(6):628–638.
Ahmad, I., & Prabowo, W. C. (2020). OPTIMASI METODE EKSTRAKSI BERBANTU MIKROWAVE DENGAN PELARUT HIJAU (ASAM SITRAT-GLUKOSA) TERHADAP KADAR POLIFENOL TOTAL DARI DAUN KADAMBA (Mitragyna speciosa Korth. Havil) MENGGUNAKAN RESPONSE SURFACE METHODOLOGY. Majalah Farmasi Dan Farmakologi, 24(1), 11-16. https://doi.org/10.20956/mff.v24i1.9456

Downloads

Download data is not yet available.
Fulltext