STUDI IN SILICO SENYAWA MINYAK ATSIRI KETUMBAR TERHADAP PROTEIN RNA-DEPENDENT RNA POLYMERASE (RdRp) COVID-19

Article History

Submited : September 11, 2023
Published : September 12, 2023

COVID-19 adalah penyakit akibat infeksi virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).COVID-19 dapat menyebabkan gangguan sistem pernapasan, mulai dari gejala yang ringan seperti flu, hinggainfeksi paru-paru, seperti pneumonia. Sampai sekarang belum ditemukan pengobatan yang sesuai untukpenyakit COVID-19. Daun ketumbar (Coriander sativum L.) mengandung beberapa minyak atsiri yangdiprediksi dapat berfungsi sebagai antivirus. Tujuan penelitian ini adalah untuk mengetahui gambaraninteraksi secara in silico senyawa minyak atsiri dari daun ketumbar terhadap target protein RNA-dependentRNA polymerase (RdRp) pada virus COVID-19. Penelitian ini dilakukan dengan menggunakan software(perangkat lunak) Pyrx dan divisualisasikan dengan software Discovery Studio. Pengunduhan protein RdRPmelalui Protein Data Bank (PDB) dengan kode 6M71. Struktur dua dan tiga dimensi senaywa minyak atsiri dankontrol diunduh dengan menggunakan database PubChem. Hasil penelitian menunjukkan senyawa minyakatsiri daun ketumbar (Coriandrin) memiliki potensi interaksi terbaik antara ligan terhadap RdRp secara in silicodengan nilai energi -6.5 Kcal/mol. Pada penelitian ini dapat disimpulkan bahwa senyawa minyak atisiri daunketumbar mampu terhambat pada protein RdRp secara in silico sehingga berpotensi sebagain anti-COVID-19.

References

  1. World Health Organization (WHO). WHO Coronavirus (COVID-19)
  2. Dashboard [internet]. Geneva: WHO; 2022. Available from:
  3. https://covid19.who.int/
  4. Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini
  5. E, Tiram G, Liubomirski Y, Satchi-Fainaro R. Immune-Mediated
  6. Approaches Against COVID-19. Nat Nanotechnol. 2020;15(8):630-645.
  7. DOI: 10.1038/s41565-020-0732-3.
  8. Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S, Meyerholz DK,
  9. Kashipathy MM, Battaile KP, Lovell S, Perlman S, Groutas WC, Chang KO.
  10. C-Like Protease Inhibitors Block Coronavirus Replication In Vitro and
  11. Improve Survival in MERS-CoV-Infected Mice. Sci Transl Med. 2020
  12. Aug;12(557):eabc5332. DOI: 10.1126/scitranslmed.abc5332.
  13. Hassanipour S, Arab-Zozani M, Amani B, Heidarzad F, Fathalipour M,
  14. Martinez-de-Hoyo R. The Efficacy and Safety of Favipiravir in Treatment
  15. of COVID-19: A Systematic Review and Meta-Analysis of Clinical Trials.
  16. Sci Rep. 2021;11(1):11022. DOI: 10.1038/s41598-021-90551-6.
  17. Shannon A, Selisko B, Le N, Huchting J, Touret F, Piorkowski G, Fattorini
  18. V, Ferron F, Decroly E, Meier C, Coutard B, Peersen O, Canard B.
  19. Favipiravir Strikes the SARS-CoV-2 at Its Achilles Heel, The RNA
  20. Polymerase. bioRxiv. 2020;15:2020.05.15.098731. DOI:
  21. 1101/2020.05.15.098731.
  22. Mandal S, Mandal M. Coriander (Coriandrum sativum L.) Essential Oil:
  23. Chemistry and Biological Activity. Asian Pacific Journal of Tropical
  24. Biomedicine. 2015;5(6):421-428. DOI:10.1016/j.apjtb.2015.04.001.
  25. Kačániová M, Galovičová L, Ivanišová E, Vukovic NL, Štefániková J,
  26. Valková V, Borotová P, Žiarovská J, Terentjeva M, Felšöciová S, Tvrdá E.
  27. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander
  28. (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods.
  29. ;9(3):282. DOI: 10.3390/foods9030282.
  30. Sinaga SM, Haro G, Sudarmi S, Iksen I. Phytochemical Screening and
  31. Antihyperglycemic Activity of Ethanolic Extract of Coriandrum sativum
  32. L. Leaf. Rasayan J Chem. 2019;12(4):1992-1996. DOI:
  33. 31788/RJC.2019.1245451.
  34. Gurning K, Iksen I, Simanjuntak HA, Purba H. Identification of the
  35. Chemical Compound of Essential Oil from Ketumbar (Coriandrum
  36. sativum L.) Leaves with Gc-Ms. Pharmacogn J. 2020;12(5): 1019-1023.
  37. DOI: 10.5530/pj.2020.12.144.
  38. Islamie R, Iksen I, Buana BC, Gurning K, Syahputra HD, Winata HS.
  39. Construction of Network Pharmacology-Based Approach and Potential
  40. Mechanism From Major Components of Coriander sativum L. against
  41. COVID-19. Pharmacia. 2022;69(3):689-697. DOI:
  42. 3897/pharmacia.69.e84388.
  43. García-Godoy MJ, López-Camacho E, García-Nieto J, Aldana-Montes AJ.
  44. Solving Molecular Docking Problems with Multi-Objective
  45. Metaheuristics. Molecules. 2015;20(6):10154-83. DOI:
  46. 3390/molecules200610154.
  47. Dallakyan S, Olson AJ. Small-Molecule Library Screening by Docking with
  48. PyRx. Methods Mol Biol. 2015;1263:243-50. DOI: 10.1007/978-1-4939-
  49. -7_19.
  50. Wang G, Zhu W. Molecular Docking for Drug Discovery and
  51. Development: A Widely Used Approach But Far From Perfect. Future
  52. Med Chem. 2016;8(14):1707-1710. DOI: 10.4155/fmc-2016-0143.
  53. Batiha GE, Moubarak M, Shaheen HM, Zakariya AM, Usman IM, Rauf A,
  54. Adhikari A, Dey A, Alexiou A, Hetta HF, Al-Gareeb AI, Al-Kuraishy HM.
  55. Favipiravir in SARS-CoV-2 infection: Is it Worthwhile? Comb Chem High
  56. Throughput Screen. 2022. DOI:
  57. 2174/1386207325666220414111840.
Iksen, & Emanrius Lase. (2023). STUDI IN SILICO SENYAWA MINYAK ATSIRI KETUMBAR TERHADAP PROTEIN RNA-DEPENDENT RNA POLYMERASE (RdRp) COVID-19. Majalah Farmasi Dan Farmakologi, 27(4), 7-9. https://doi.org/10.20956/mff.v27i4.30047

Downloads

Download data is not yet available.
Fulltext