Penerapan Model Analisis Regresi Linier Berganda dengan Pendekatan Bayesian pada Data Aset Bank di Indonesia

Authors

  • Ahmad Mursyid Ainul Program Studi Statistika, Universitas Tadulako
  • Junaidi Junaidi Program Studi Statistika, Universitas Tadulako
  • Iut Tri Utami Program Studi Statistika, Universitas Tadulako

Abstract

Analisis regresi merupakan salah satu teknik analisis data yang seringkali digunakan untuk mengkaji hubungan antara beberapa variabel. Salah satu penerapan regresi dapat ditemukan pada bidang ekonomi yakni penentuan faktor-faktor yang mempengaruhiaset bergantung pada Suku Bunga Dasar Kredit (SBDK). Tujuan penelitian ini adalah mengestimasi parameter dan menentukan faktor-faktor yang mempengaruhi aset bankmenggunakan metode regresi linier berganda dengan pendekatan Bayesian. Aplikasi WinBUGSdigunakan dalam iterasi algoritma. Variabel bebas yang digunakan dalam penelitian adalah        Aset (Y), Kredit korporasi (X1), Kredit ritel (X2), Kredit mikro (X3), Kredit komsumsi KPR (X4), Kredit konsumsi non KPR (X5). Sebanyak 5000 iterasidengan penerapan metode MCMC dan hasil estimasi parameter yaitu :yˆ = 2,836+0,2836x +0,2634x +0,1953x +0,2718x +0,2617x 1i 2i 3i 4i 5i dengan selang kepercayaan 95% untuk masing-masing penduga parameter berturut-turut adalah(1.383;4.791), (0,135;0,479), (0,123;0,447), (0,092;0,333), (0,13;0,468)dan (0,126;0,439).Kata Kunci :Bayesian, MCMC, suku bunga, WinBUGSABSTRACT Regression analysis is a technique of statistical data analysis to investigate the relationship between several variables. One of the application of the regression can be found in the economic field to determine factors that affect the asset which depends on the Basic Interest Rate of Credit (SBDK). The purpose of this study is to estimate the parameters and determining factors that affect bank assets using multiple linear regression method with Bayesian approach. The WinBUGS is used in algorithm iteration. The independent variables used in the research are Assets (Y), Corporate Credit (X1), Retail Credit (X2), Micro Credit (X3), KPR Consumption Loan (X4), Non-KPR Consumption Loans (X5). A total of 5000 iterations with the application of the MCMC method and parameters estimation showing that the regression equations are: yˆ =2,836+0,2836x +0,2634x +0,1953x +0,2718x +0,2617x 1i 2i 3i 4i 5i with 95% confidence intervals for each parameterized predictor are (1,383,4,791), (0,135; 0,479), (0,123; 0,447), (0,092; 0,333), (0,13; 0,468) and (0,126; 0.439). Our research reveals that the 5 independent variables affect the asset Keywords : Bank Asset, Bayesian, MCMC, Regression Analysis, WinBUGS  

Downloads

Download data is not yet available.

References

Bain, L. J., and Engelhardt, M. (1992). Introduction to Probability and Mathematical Statistics. Second Edition. Duxbury Press; California

Box, G. E. P., and Tiao, G. C., (1973). Bayesian Inference In Statistical Analysis. Philippines : Addision-Wesley Publishing Company Inc, 1973.

Casella. G., and Berger, R.L. (2002) Statistical Inference, Thomson Learning, Duxbury.

Evans, S. (2012). Bayesian Regression Analysis. Faculty of The College of Arts and Sciences, University of Louisville, 2012.

Gamerman, D. (1997) Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman & Hall, London, 1997.

Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Ioannis, N. (1973). Bayesian Modeling Using WinBUGS. New Jersey: A John Wiley & Sons, Inc.

Johnson, M.S. (2009). Introduction to Bayesian Statistics with WinBUGS. New York : Columbia University.

Junaidi., Magdalena, M., dan Nurdiono., (2013). “Transparansi Informasi Suku Bunga Dasar Kredit Pada Kredit UMKM”.

Kutner, M.H., C.J. Nachtsheim., dan J. Neter. (2004). Applied Linear Regression Models. 4th ed. New York: McGraw-Hill Companies, Inc.

Lancaster, T., (2003). An Introduction to Modern Bayesian Econometrics.

Lembaga Administrasi Negara, (2007). Dasar-Dasar Manajemen Aset atau Barang Milik Daerah. Diklat Teknis Manajemen Aset Daerah.

Mitha, R. D., Setiawan, A., dan Parhusip, H. A., (2014). Model Koreksi Kesalahan Dengan Metode Bayesian Pada Data Runtun Waktu Indeks Harga Konsumen Kota - Kota Di Papua. Seminar Nasional Sains dan Pendidikan Sains IX, Universitas Kristen Satya Wacana 2014. Vol. 5. Hal. 10

Metropolis, N .. Rosenbluth, A. W ., Rosenbluth. M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics

Mutiarani, V., Setiawan, A., dan Parhusip, H. A., (2012). Penerapan Model Regresi Linier Bayesian Untuk Mengestimasi Parameter dan Interval Kredibel, Seminar Nasional Pendidikan Matematika Ahmad Dahlan 2012 (SENDIKMAD 2012) Universitas Ahmad Dahlan, 2012.

Soejoeti, Z., dan Soebanar. (1988). Inferensi Bayesian. Jakarta : Karunika Universitas Terbuka.

William, M. B., 2007. Introduction to Bayesian Statistics, 2nd ed. New Jersey: Wiley.

Downloads

Published

2018-06-17