PENERAPAN TEKNOLOGI BIOCHAR BERBASIS KARBON OFFSET MENGGUNAKAN TONGKOL JAGUNG PADA KELOMPOK TANI MASSEDDI I KABUPATEN WAJO

Authors

  • Sukmawati Sukmawati UNIVERSITAS MUHAMMADIYAH PAREPARE
  • Iradhatullah Rahim Fakultas Pertanian, Peternakan, dan Perikanan, Universitas Muhammadiyah Parepare.
  • Bahruddin Bahruddin Fakultas Ekonomi dan Bisnis, Universitas Muhammadiyah Parepare.
  • Suherman Suherman Fakultas Pertanian, Peternakan, dan Perikanan, Universitas Muhammadiyah Parepare.
  • Mayasari Yamin Fakultas Pertanian, Peternakan, dan Perikanan, Universitas Muhammadiyah Parepare.
  • Sri Nur Qadri Fakultas Pertanian, Peternakan, dan Perikanan, Universitas Muhammadiyah Parepare.
  • Syamsiar Zamzam Fakultas Pertanian, Peternakan, dan Perikanan, Universitas Muhammadiyah Parepare.
  • Fatmawati Fatmawati Program Studi Teknik Lingkungan, Sekolah Tinggi Ilmu Teknologi Nusantara Makassar.

DOI:

https://doi.org/10.20956/jdp.v10i1.28340

Keywords:

biochar, bioremediasi, kredit karbon, ofseet karbon, pupuk slowrelease

Abstract

Limbah pertanian merupakan sumber bahan organik berkelanjutan di dunia. Untuk mengatasi penurunan kesuburan tanah yang berkepanjangan, lahan pangan membutuhkan penambahan bahan organik secara berkelanjutan. Biochar merupakan bahan organik yang persisten tersimpan dalam tanah. Tujuan kegiatan ini adalah untuk meningkatkan wawasan petani dalam memanfaatkan teknologi biochar tanpa asap dalam mengelola tongkol jagung sesuai prosedur karbon kredit. Metode pelaksanaan kegiatan terdiri dari: 1) Training prosedur standarisasi; 2) Produksi biochar dan pupuk slow release; dan 3) Aplikasi biochar sebagai bahan pembenah tanah. Hasil dari kegiatan ini adalah: 1) Meningkatnya kemampuan kelompok tani memproduksi biochar sesuai prosedur karbon kredit; 2) Sertifikasi biochar untuk kelompok tani; dan 3) Meningkatnya kandungan C-organik tanah. Dalam kegiatan ini melibatkan 40 orang anggota Kelompok Tani Masseddi I yang berkomitmen untuk mengolah limbah jagung menggunakan teknologi biochar sesuai prosedur karbon kredit sebagai tindak mitigasi petani jagung menghadapi perubahan iklim. ABSTRACT Agricultural waste is a source of sustainable organic matter in the world. To overcome the prolonged decline in soil fertility, food fields require the addition of organic matter on an ongoing basis. Biochar is a persistent organic material stored in the soil. This activity aims to increase farmers' insight into utilizing smokeless biochar technology in managing corn cobs according to the carbon credit procedure. Methods in implementing activities consist of 1) Standardization procedure training, 2) Biochar and slow-release fertilizer production, and 3) Application of biochar as a soil amendment. The results of this activity are: 1) Increasing the ability of farmer groups to produce biochar according to carbon credit procedures; 2) Biochar certification for farmer groups; and 3) Increasing soil C-organic content. This activity involved 40 Masseddi I Farmer Group members committed to processing corn waste using biochar technology according to the carbon credit procedure as a mitigation measure for corn farmers facing climate change. Keywords: Biochar, bioremediation, carbon credits, carbon offset, slow-release fertilizer. ABSTRACT Agricultural waste is a source of sustainable organic matter in the world. To overcome the prolonged decline in soil fertility, food fields require the addition of organic matter on an ongoing basis. Biochar is a persistent organic material stored in the soil. This activity aims to increase farmers' insight into utilizing smokeless biochar technology in managing corn cobs according to the carbon credit procedure. Methods in implementing activities consist of 1) Standardization procedure training, 2) Biochar and slow-release fertilizer production, and 3) Application of biochar as a soil amendment. The results of this activity are: 1) Increasing the ability of farmer groups to produce biochar according to carbon credit procedures; 2) Biochar certification for farmer groups; and 3) Increasing soil C-organic content. This activity involved 40 Masseddi I Farmer Group members committed to processing corn waste using biochar technology according to the carbon credit procedure as a mitigation measure for corn farmers facing climate change. Keywords: Biochar, bioremediation, carbon credits, carbon offset, slow-release fertilizer.

Downloads

Download data is not yet available.

References

BPS. (2018). Luas Panen Jagung Menurut Provinsi, 2014 - 2018. https://www.pertanian.go.id/Data5tahun/TPATAP-2017(pdf)/13-LPJagung.pdf

Burrell, L. D., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96–102. https://doi.org/10.1016/j.geoderma.2016.07.019

Ceranic, M., Kosanic, T., Djuranovic, D., Kaludjerovic, Z., Djuric, S., Gojkovic, P., & Bozickovic, R. (2016). Experimental investigation of corn cob pyrolysis. Journal of Renewable and Sustainable Energy, 8(6). https://doi.org/10.1063/1.4966695

Domingues, R. R., Trugilho, P. F., Silva, C. A., A, I. C. N., Melo, C. A., Magriotis, Z. M., Sa, M. A., & Melo, D. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. 1–19.

Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. https://doi.org/10.1016/j.biortech.2012.03.022

Gao, S., Hoffman-Krull, K., Bidwell, A. L., & DeLuca, T. H. (2016). Locally produced wood biochar increases nutrient retention and availability in agricultural soils of the San Juan Islands, USA. Agriculture, Ecosystems and Environment, 233, 43–54. https://doi.org/10.1016/j.agee.2016.08.028

Głąb, T., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20. https://doi.org/10.1016/j.geoderma.2016.06.028

Hammes, K., & Schmidt, M. W. I. (2009). Changes of Biochar in Soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and tech- nology (Page: 33-43). In J. and J. S. Lehmann (Ed.), Biochar for Environmental Management: Science and Technology and Implementation (second, pp. 169–178). Earthscan in the UK and USA. https://doi.org/doi.org/10.4324/9781849770552.

Isidoria, M., Gonzaga, S., Mackowiak, C., Quintao, A., Almeida, D., Ilmar, J., Carvalho, T. De, & Rocha, K. (2017). Catena Positive and negative e ff ects of biochar from coconut husks , orange bagasse and pine wood chips on maize ( Zea mays L .) growth and nutrition. Catena, October 2016, 0–1. https://doi.org/10.1016/j.catena.2017.10.018

Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005

Ma, N., Zhang, L., Zhang, Y., Yang, L., & Yu, C. (2016). Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application. 1–10. https://doi.org/10.1371/journal.pone.0154091

Nurhayati, Jamil, A., & Anggraini, S. (2015). Potensi Limbah Pertanian sebagai Pupuk Organik Lokal di Lahan Kering Dataran Rendah Iklim Basah. Iptek Tanaman Pangan, 6(2), 193–202.

Raj, N., Mulder, J., Elizabeth, S., Martinsen, V., Peter, H., & Cornelissen, G. (2018). Science of the Total Environment Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Science of the Total Environment, 625, 1380–1389. https://doi.org/10.1016/j.scitotenv.2018.01.022

Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar : A Sustainable Approach for Improving Plant Growth and Soil Properties. https://doi.org/DOI: 10.5772/intechopen.82151

Ren, T., Fan, P., Zuo, W., Liao, Z., Wang, F., Wei, Y., Cai, X., & Liu, G. (2023). Biochar-based fertilizer under drip irrigation: More conducive to improving soil carbon pool and promoting nitrogen utilization. Ecological Indicators, 154(March), 110583. https://doi.org/10.1016/j.ecolind.2023.110583

Samanta, A. K., Senani, S., Kolte, A. P., Sridhar, M., Sampath, K. T., Jayapal, N., & Devi, A. (2012). Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food and Bioproducts Processing, 90(3), 466–474. https://doi.org/10.1016/j.fbp.2011.11.001

Srivastava, R. K., Shetti, N. P., Reddy, K. R., & Aminabhavi, T. M. (2020). Sustainable energy from waste organic matters via efficient microbial processes. Science of the Total Environment, 722, 137927. https://doi.org/10.1016/j.scitotenv.2020.137927

Wang, C., Alidoust, D., Yang, X., & Isoda, A. (2018). Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicology and Environmental Safety, 150(December 2017), 62–69. https://doi.org/10.1016/j.ecoenv.2017.12.036

Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y., & Wang, H. (2022). Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167. https://doi.org/10.1016/j.ese.2022.100167

Young, A. (1989). Agroforestry for soil conservation. In Soil erosion and conservation (First). CAB International International Council for Research in Agroforestry. http://apps.worldagroforestry.org/downloads/Publications/PDFS/B05682.pdf

Zong, Y., Chen, D., & Lu, S. (2014). IZong, Y., Chen, D., & Lu, S. (2014). Impact of biochars on swell – shrinkage behavior , mechanical strength , and surface cracking of clayey soil, (1), 920–926.mpact of biochars on swell – shrinkage behavior , mechanical strength , and surface cracking o. 1, 920–926.

Downloads

Published

2024-10-24

How to Cite

Sukmawati, S., Rahim, I., Bahruddin, B., Suherman, S., Yamin, M., Qadri, S. N., Zamzam, S., & Fatmawati, F. (2024). PENERAPAN TEKNOLOGI BIOCHAR BERBASIS KARBON OFFSET MENGGUNAKAN TONGKOL JAGUNG PADA KELOMPOK TANI MASSEDDI I KABUPATEN WAJO. Jurnal Dinamika Pengabdian, 10(1), 61-68. https://doi.org/10.20956/jdp.v10i1.28340