Main Article Content

Abstract

A study on synthesis and characterization of nanoporous carbon derived from sugarcane bagasse   (Saccharum   officianarum)   by   ultrasonik   irradiation   using   ZnCl2     activator   for electrochemical capasitor application has been investigated. Nanoporous carbon is a basic material for the electrode in the electrochemical energy storage. Nanoporous carbon has been synthesized based on three-steps procedures, i.e. carbonization in temperature of 350 0C, silica extraction, and activation using ZnCl2  with ultrasonic irradiation. Activated carbon with irradiation showed an increasing in intensity of the –OH functional group stretch at wave number of 3419,79. The results of XRF analysis showed the highest content of oxide compound in the activated carbon was ZnO as 97,06%, and result of XRD analysis showed that activated carbon has both amorphous and crystalline. The result of SEM analysis showed that the pores evolvement of irradiated activated carbon was better than un-irradiated activated carbon, with diameter of the pores 1,5 to 2 µm. The surface area of the carbon in optimum temperature of 30 oC for 60 minutes was 171, 2802 m2/g and the energy storage capacity was 0,3284 x 10-5 F/g.

Keywords

Electrochemical energy storage nanoporous carbon sugarcane bagasse silica extraction ZnCl2 activator ultrasonic irradiation

Article Details

How to Cite
Labannia, A., La Hasan, N., Maming, M., & zakir, muhammad. (2015). Synthesis and Characterization of Nanoporous Carbon from Sugarcanne Bagasse (Saccharum officianarum) with ZnCl2 Activator by Ultrasonic Irradiation as Electrochemical Energy Storage Material. Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 8(1), 42-51. https://doi.org/10.20956/ica.v8i1.2480

References

  1. Aisah, S., Yulianti, E., san Fasya, A.G., 2010, Penurunan Angka Peroksida dan Asam Lemak Bebas(FFA) pada Proses Bleaching Minyak Goreng Bekasoleh KarbonAktif Polong Buah Kelor (Moringa oleifera.Lamk) dengan Aktivasi NaCl, Alchemy, 1( 2), 53-103.
  2. Frackowiak, E., AND Beguin, F., 2001. Carbon materials for the electrochemical storage of energi in capacitors, Carbon, 39(1): 937-
  3. Kristianingrum, S., Siswani, E.D., Fillaeli, A., 2011, Pengaruh Jenis Asam pada Sintesis Silika Gel dari Abu Bagasse dan Uji Sifat adsorptifnya Terhadap Ion Logam Tembaga (II), Skripsi, Universitas Negeri Yogyakarta.
  4. Mujiyanti, Nuryono, Kunarti, 2010, Sintesis dan karakterisasi Silika Gel dari Abu
  5. Sekam Padi yang diimobilisasi dengan 3-(Trimetoksisilil)-1- propantiol. Jurnal Sains, 4(2), 150-167.
  6. Prabowo, A. L., 2009, Pembuatan Karbon Aktif dari Tongkol Jagung serta Aplikasinya untuk Adsorbsi Cu, Pb, dan Amonia, Skripsi, Universitas Indonesia, Depok.
  7. Rosi, M. Iskandar, F., Abdullah, M., Khairurrijal., 2013, Sintesis nanopori Karbon dengan Variasi Jumlah NaOH dan aplikasinya sebagai Superkapasitor, Seminar Nasional Material, ITB.
  8. Sembiring and Sinaga R., 2003, Arang Aktif (Pengenalan dan Proses Pembuatannya), USU Digital Library, Medan, http://library.usu.ac.id/download/f t/industri-meilita.pdf.
  9. Shofa, 2012, Pembuatan Karbon Aktif Berbahan Baku Ampas Tebu dengan Aktivasi Kalium Hidroksida, Skripsi, Universitas Indonesia, Depok.
  10. Wei, X., Xiao, Li., Jin Zhou, dan Ping, Z. S., 2011, Nanoporous Carbon Derived from Risk Husk for Electrochemical Capacitor Application, Adv. Mater. Res. J., 239-242, www.scientific.net
  11. Sudibandriyo, M., and Lydia, 2011, Karakteristik Luas Permukaan Karbon Aktif dari Ampas Tebu dengan Aktivasi Kimia, Skripsi, Universitas Indonesia, Depok.
  12. Winter, M., dan Brodd, R.J., 2004., What are batteries, fuel cells, and supercapacitors?, Chem. Rev., (104), 4245-4269.