1D Audio Magnetotelluric Modelling for Deep Aquifer Identification in the Lava Fan Area of Haruman Peak, Malabar Mountains

Authors

  • Nabilah Rahmawati Department of Geophysics, Padjadjaran University
  • Nabila Putri Kusuma Department of Geophysics, Padjadjaran University
  • Shofie Dzakia Hanifah Department of Geophysics, Padjadjaran University
  • G.M. Lucki Junursyah Center for Geological Survey, Geological Agency, Ministry of Energy and Mineral Resources
  • Asep Harja Department of Geophysics, Padjadjaran University

DOI:

https://doi.org/10.20956/geocelebes.v8i1.33969

Keywords:

1d, audio magnetotelluric, deep aquifer, haruman peak, subsurface resistivity structure

Abstract

The Malabar Mountains area acts as a catchment and infiltration zone for rainwater. Haruman Peak is the location of one of these areas. Information on the well-preserved depth of the shallow aquifer at 40 meters reinforces this. This research reviews the results of subsurface 1D resistivity structures from AMT data to obtain information on the depth of deep aquifers on the western slope of the Haruman Peak Lava Fan, Haruman Mountains. 1D modelling shows an aquifer at depth of 140.56-2080.07 meters with resistivity ranging from 5.25-68.08 Ωm. At depths of 453.32 m (HR02), 530.8 m (HR03), 1464.97 m (HR01), and 2080.07 m (HR02), interbedded tuff-andesite with minor pumice identifies the deep aquifer. In addition, a depth of 140.56 m (HR02) with a resistivity value of 68.08 Ωm indicates a shallow aquifer. Looking at the elevation of the Bandung Basin, water from aquifers located at elevations > 700 meters above sea level will flow into the Bandung Basin.

Downloads

Download data is not yet available.

References

Alviyanda, Junursyah, G. M. L, Gumilar, I. S., & Mardiana, U. (2014). Interpretation of Subsurface Structure in Tertiary Sediment Based on Magnetotelluric Data, South Buton area. Proceedings of the Indonesian Petroleum Association, 38th Annual Convention and Exhibition, Jakarta.

Alviyanda, Junursyah, G. M. L., & Sumintadireja, P. (2020). Stratigraphic Model of East Biak Based on Magnetotelluric Data. Journal of Mathematical & Fundamental Sciences, 52(2), 232–249. https://doi.org/10.5614/j.math.fund.sci.2020.52.2.7

Alzwar, M., Akbar, N., & Bachri, S. (1992). Peta Geologi Lembar Garut dan Pameungpeuk, Jawa, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi.

Bahr, K. (1991). Geological Noise in Magnetotelluric Data: A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2), 24–38. https://doi.org/10.1016/0031-9201(91)90101-M

Cagniard, L. (1953). Basic Theory of the Magneto-Telluric Method of Geophysical Prospecting. Geophysics, 18(3), 605–635. https://doi.org/10.1190/1.1437915

Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam's Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophysics, 52(3), 289–300. https://doi.org/10.1190/1.1442303

Constable, C. (2016). Earth’s Electromagnetic Environment. Surveys in Geophysics, 37, 27–45. https://doi.org/10.1007/s10712-015-9351-1

Gomo, M. (2023). Use of Electric Potential Difference in Audio Magnetotelluric (AMT) Geophysics for Groundwater Exploration. Groundwater for Sustainable Development, 20, 100864. https://doi.org/10.1016/j.gsd.2022.100864

Harja, A., Ma’arif M., F. R., Nanda, M. D., Duvanovsky, D. A., Tangke, R., Shafa, Z. I., Fillsani, S., Gunawan, I., & Susanto, K. (2021). Studi Hidrogeofisika Gunung Malabar Sebagai Gunung Tertinggi pada Sistem Hidrologi Cekungan Bandung. Jurnal Geologi dan Sumberdaya Mineral, 22(4), 223–230. https://doi.org/10.33332/jgsm.geologi.v22i4.654

Harja, A., Aprilia, B. A., Susanto, K., & Fitriani, D. (2023). Identifikasi Zona Akuifer Menggunakan Metode Resistivitas-DC di Daerah Kipas Lava Pegunungan Malabar Kabupaten Bandung Jawa-Barat. JIIF (Jurnal Ilmu dan Inovasi Fisika), 7(1), 49–57. https://doi.org/10.24198/jiif.v7i1.43216

Hidayat, H. Setiawan, J. J., Ibrahim, A., Marjiyono, M., & Junursyah, G. M. L. (2021). Studi Magnetotelurik (MT) Untuk Mendelineasi Potensi Regional Gas Serpih bawah Permukaan Berdasarkan properti Tahanan Jenis di Cekungan Kutai, Kalimantan Timur. Jurnal Geologi Dan Sumberdaya Mineral, 22(2), 107–114. https://doi.org/10.33332/jgsm.geologi.v22i2.571

Junursyah, G. M. L., Prabowo, A., & Hidayat, W. (2020). Analisis Kualitas Data Magnetotelurik Berdasarkan Parameter Koherensi Studi Kasus: Data Magnetotelurik Di Daerah Bandung, Jawa Barat. Jurnal Mineral Energi dan Lingkungan, 4(2). 78–83. https://doi.org/10.31315/jmel.v4i2.3679

Junursyah, G. M. L., Amalia, T. D. A., Hidayat., Rizkika, O., Marjiyono, M., & Handyarso, A. (2021). Optimasi Kualitas Data Magnetotelurik di Daerah Singkawang dan Sekitarnya Berdasarkan Analisis Koherensi. Publikasi Khusus Geosains Laboratorium dan Sarana Penyelidikan, 69–86.

Junursyah, G. M. L., Parlindungan, E., Hidayat, H., & Harja, A. (2022). Reduksi Efek Dimensionalitas 3D pada Data Magnetotelurik Menggunakan Analisis Koherensi, Tren Kurva, dan Skin Depth: Studi Kasus di Pulau Yapen Bagian Selatan dan Sekitarnya, Papua. Jurnal Geologi dan Sumberdaya Mineral, 23(4), 247–255. https://doi.org/10.33332/jgsm.geologi.v23i4.712

Junursyah, G. M. L, Fauzhy, M. A., Hidayat, & Harja, A. (2023). Reduksi Efek Dimensionalitas 3D Berdasarkan Analisis Koherensi Pada Data Magnetotelurik Di Daerah Bandung Bagian Timur. Publikasi Laboratorium dan Sarana Penyelidikan, 49–60.

Kalev, S. D., & Toor, G. S. (2018). The composition of soils and sediments. Green Chemistry (pp. 339–357). Elsevier. https://doi.org/10.1016/B978-0-12-809270-5.00014-5

Keegan-Treloar, R., Irvine, D. J., Solórzano-Rivas, S. C., Werner, A. D., Banks, E. W., & Currell, M. J. (2022). Fault-controlled springs: A review. Earth-Science Reviews, 230, 104058. https://doi.org/10.1016/j.earscirev.2022.104058

Kodoatie, R. J. (2021). Tata Ruang Air Tanah. Penerbit Andi.

Kurniawan, O., Surya, R. D., & Wargaliyasa, G. (2022). Analisis Fault Fracture Density pada Potensi Panas Bumi NonVulkanik untuk Menentukan Recharge Area; Studi Kasus di Wilayah Lore Lindu, Sulawesi Tengah. Jurnal Ilmiah Geomatika, 2(2), 45–53. https://doi.org/10.31315/imagi.v2i2.9417

Kurniawan, R., Ardi, N. D., & Hidayat, H. (2019). Analisis Penampang Resistivitas 2D Metode Magnetotellurik dan Audio-magnetotellurik Untuk Mengetahui Sistem Petroleum Pada Cekungan Singkawang. Wahana Fisika, 4(2), 81–88. https://doi.org/10.17509/wafi.v4i2.21869

Li, J., Wang, W., Cheng, D., Li, Y., Wu, P., & Huang, X. (2021). Hydrogeological Structure Modelling Based on An Integrated Approach Using Multi-Source Data. Journal of Hydrology, 600, 126435. https://doi.org/10.1016/j.jhydrol.2021.126435

Montahaei, M. (2022). Audio-Magnetotelluric Modeling for 2D Characterization of Shallow Sedimentary Basins and Groundwater System in Central Zagros, Iran. Pure and Applied Geophysics, 179(12), 4567–4594. https://doi.org/10.1007/s00024-022-03181-y

Oktariadi, O., Kasbani, K., & Memed, M. W. (2021). Geologi Lingkungan Cekungan Bandung. Badan Geologi.

Pranata, E., Irawati, S. M., & Niasari, S. W. (2017). Magnetotelluric Data Analysis using Swift Skew, Bahr Skew, Polar Diagram, and Phase Tensor: A Case Study in Yellowstone, US. Proceedings of the Pakistan Academy of Sciences, 54(3), 311–317. https://www.paspk.org/wp-content/uploads/2017/09/Magnetotelluric-Data-Analysis.pdf

Suhari, S., & Siebenhüner, M. (1993). Environmental geology for land use and regional planning in the Bandung Basin, West Java, Indonesia. Journal of Southeast Asian Earth Sciences, 8(1–4), 557–566. https://doi.org/10.1016/0743-9547(93)90053-R

Tripathi, A., Shalivahan, S. S., Bage, A. K., Singh, S., & Yadav, P. K. (2019). Audio-Magnetotelluric Investigation of Bakreswar Geothermal Province, Eastern India. Journal of Earth System Science, 128, 102. https://doi.org/10.1007/s12040-019-1115-8

Wu, Q., Li, Y.-B, Mi, H.-Z, Wang, G., & Zhang, Z.-Y. (2023). Simulation and Observations of Audio Magnetotelluric Measurements over Water-Covered Areas. Minerals, 13(8), 990. https://doi.org/10.3390/min13080990

Xiao, Q., Cai, X., Liang, G., Xu, X., & Zhang, B. (2011). Application of 2D Magnetotelluric Methods in a Geological Complex Area, Xinjiang, China. Journal of Applied Geophysics, 75, 19–30. https://doi.org/10.1016/j.jappgeo.2011.06.007

Xu, Z., Li, G., Xin, H., Tang, J., & Lv, F. (2020). Hydrogeological Prospecting in the Da Qaidam Area of the Qaidam Basin Using the Audio-Frequency Magnetotelluric Method. Journal of Applied Geophysics, 182, 104179. https://doi.org/10.1016/j.jappgeo.2020.104179

Xu, Z., Xin, H., Weng, Y., & Li, G. (2023). Hydrogeological Study in Tongchuan City Using the Audio-Frequency Magnetotelluric Method. Magnetochemistry, 9(1), 32. https://doi.org/10.3390/magnetochemistry9010032

Zaher, M. A., Younis, A., Shaaban, H., & Mohamaden, M. I. I. (2021). Integration of Geophysical Methods for Groundwater Exploration: A Case Study of El Sheikh Marzouq Area, Farafra Oasis, Egypt. The Egyptian Journal of Aquatic Research, 47(2), 239–244. https://doi.org/10.1016/j.ejar.2021.03.001

Downloads

Published

2024-04-29

How to Cite

Rahmawati, N., Kusuma, N. P., Hanifah, S. D., Junursyah, G. L., & Harja, A. (2024). 1D Audio Magnetotelluric Modelling for Deep Aquifer Identification in the Lava Fan Area of Haruman Peak, Malabar Mountains. JURNAL GEOCELEBES, 8(1), 71–82. https://doi.org/10.20956/geocelebes.v8i1.33969

Issue

Section

Articles