Genesis of Bauxite Ore in Toba Area Sanggau District, West Kalimantan Province
DOI:
https://doi.org/10.20956/geocelebes.v8i1.26521Keywords:
Al2O3, Bauxite, Fe2O3, Gibbsite, Si2O3, XRF methodsAbstract
Indonesia's largest bauxite reserves are in the province of West Kalimantan, which is 703 million tons Bauxite is formed from rocks with a high relative aluminum (Al) content, low iron (Fe) content, and small amount of quartz. The mineralogy and characteristics of lateritic bauxite deposits are closely related to several factors, one of which is the texture and composition of the bedrock such as color, mineral composition, and shape of the ore. This study discusses the genetic type of bauxite deposits based on mineralogy and geochemistry using mineragraphic, XRD, and XRF methods. The primary data from bauxite ore samples were collected from the stockpile of PT. Dinamika Sejahtera located in Toba area. The quantitative result of the geochemical analysis indicates a higher amount of alumina observed using the XRF method. Granodiorite bauxite, which is bauxite coming from granodiorite bedrock, generally has abundant geochemical elements, especially SiO2 and Al2O3. The lateritic bauxite type in the Toba area is a product of granodiorite weathering from the Sepauk Tonalite formation is embedded within a clay matrix which exhibits a brownish to red color with coarse to boulder-size of concretion texture without relict. Some important elements in bauxite laterite deposits are Al, Fe, Si (Silicon), and Ti (Titanium). The comparison between Al and Si values is a benchmark for the economics of bauxite mines. Gibbsite is the major mineral in the bauxite ore, while hematite, goethite, kaolinite, and quartz are the accessory minerals. The deposit is recognized as Low-Fe bauxite due to comparing Al2O3, Fe2O3, and Si2O3 concentrations. The weathering process has altered the primary texture, remaining resistant and secondary minerals. The petrographic analysis shows the replacement of Gibbsite as bauxite ore which presents as kaolinite replacement and fills the mineral cracks. The result of this study is expected to be useful in determining the exploration method for the bauxite deposits.Downloads
References
Anggrahini, A. H., Wibowo, A. P., & Rosyid, F. A. (2020). Peramalan Kebutuhan Bijih Bauksit Untuk Memenuhi Kebutuhan Aluminium Nasional Menggunakan Model ARDL dan VAR. Prosiding TPT XXIX PERHAPI 2020, 401–412. https://prosiding.perhapi.or.id/index.php/prosiding/article/view/170
Bárdossy, G. (1982). Bauxite Deposits on Carbonate Rocks, Developments in Economic Geology. Elsevier.
Boinauw, H. (2017). Pembelajaran Geologi: Kajian Pelapukan Geologi. Jurnal Ilmiah Jendela Pengetahuan, 10(22), 59–63. https://ejournal.unpatti.ac.id/ppr_iteminfo_lnk.php?id=1623
Delvigne, J. E. (1998). Atlas of Micromorphology of Mineral Alteration and Weathering. Mineralogical Association of Canada.
Dyussenova, S., Abdulvaliyev, R., Akcil, A., Gladyshev, S., & Ruzakhunova, G. (2022). Processing of Low-Quality Gibbsite-Kaolinite Bauxites. Metals, 12(6), 1030. https://doi.org/10.3390/met12061030
Economou-Eliopoulos, M., & Kanellopoulos, C. (2023). Abundance and Genetic Significance of Lithium in Bauxite Deposits: A Comparative Review. Minerals, 13(7), 962. https://doi.org/10.3390/min13070962
Gazhian, S. R., Nirmala, A., Aprillia, R., Sutrisno, H., & Meilasari, F. (2022). Tailing Pond Maintenance System PT. Dinamika Sejahtera Mandiri at The Teraju Site, Toba District, Sanggau Regency. Jurnal Teknik Sipil, 22(2), 122–126. https://dx.doi.org/10.26418/jtst.v22i2.59158
Gu, J., Huang, Z., Fan, H., Jin, Z., Yan, Z., & Zhang, J. (2013). Mineralogy, Geochemistry, and Genesis of Lateritic Bauxite Deposits in The Wuchuan-Zheng’an-Daozhenarea, Northern Guizhou Province, China. Journal of Geochemical Exploration, 130, 44–59. https://doi.org/10.1016/j.gexplo.2013.03.003
Haryadi, H. (2016). Analisis Lost Opportunity (LO) Bauksit Indonesia. Jurnal Teknologi Mineral dan Batubara, 12(1), 45–57. https://doi.org/10.30556/jtmb.Vol12.No1.2016.230
Hasria, H., Asfar, S., Ngkoimani, L. O., Okto, A., Jaya, R. I. M. C., & Sepdiansar, R. (2021). Pengaruh Geomorfologi Terhadap Pola Distribusi Unsur Nikel Dan Besi Pada Endapan Nikel Laterit di Kabupaten Buton Tengah-Sulawesi Tenggara. Jurnal Geosapta, 7(2), 103–114. http://dx.doi.org/10.20527/jg.v7i2.10716
Igbokwe, I. O., Igwenagu, E., & Igbokwe, N.A. (2019). Aluminum Toxicosis: A Review of Toxic Actions and Effects. Journal of Interdisciplinary Toxicology, 12(2), 45–70. https://doi.org/10.2478/intox-2019-0007
Jafar, N. (2017). Analisis Unsur Endapan Bauksit Menggunakan X-Ray Fluorescence (XRF) PT. Antam Tbk. Unit Geomin Daerah Kenco Kabupaten Landak Provinsi Kalimantan Barat. Journal of Chemical Process Engineering, 2(1), 46–49. https://doi.org/10.33536/jcpe.v2i1.115
Mamedov, V., Boeva, N., Makarova, M., Shipilova, E., & Melnikov, P. (2022). The Problem of the Formation of Boehmite and Gibbsite in Bauxite-Bearing Lateritic Profiles. Minerals, 12, 389. https://doi.org/10.3390/min12030389
Mildan, D., Subandrio, A. S., Bangun, P., & Sunjaya, D. (2021). Contrasting Genesis of Lateritic Bauxite on Granodioritic and Andesitic Rocks of Mempawah Area, West Kalimantan. IAGI Journal, 1(2), 81–88. https://doi.org/10.51835/iagij.2021.1.2.33
Nugraheni, R. D., Riyandhani, C. P., Apriniyadi, M., & Sunjaya, D. (2021). Critical Raw Materials Enrichment in Bauxite Laterite: A Case Study of Diverse Parent Rock Types. IOP Conference Series: Earth and Environmental Science, 882, 012024. https://doi.org/10.1088/1755-1315/882/1/012024
Nugraheni, R. D., Sunjaya, D., Sutopo, B., Apriniyadi, M., Riyandhani, C. P., & Ronoatmojo, I. S. (2022). Spatial Simulation Model of Bauxite Grades Using R Data Analysis: Its Implication for Exploration Activity. Indonesian Journal on Geoscience, 9(3), 337–353. https://doi.org/10.17014/ijog.9.3.
Purwanto, A., & Paiman. (2014). Inventarisasi Karakteristik Lahan Lokasi Sumber Air Panas Untuk Pengembangan Pariwisata di Kecamatan Jangkang Kabupaten Sanggau. Jurnal Edukasi, 12(2), 179–192. https://journal.ikippgriptk.ac.id/index.php/edukasi/article/view/154
Pusat Sumber Daya Mineral Batubara dan Panasbumi. (2022). Neraca Sumber Daya dan Cadangan Mineral Batubara dan Panas Bumi Tahun 2021. Kepala Bagian Umum Sub Koordinator Perencanaan dan Keuangan.
Putzolu, F., Papa, A. P., Mondillo, N., Boni, M., Balassone, G., & Mormone, A. (2018). Geochemical Characterization of Bauxite Deposits from The Abruzzi Mining District (Italy). Minerals, 8(7), 298. https://doi.org/10.3390/min8070298
Ramadhan, F. R., Aribowo, Y., Widiarso, D. A., & Betraz, A. (2014). Geologi, Karakteristik dan Genesa Endapan Laterit Bauksit P.T. ANTAM (Persero) Tbk. Unit Geomin, Daerah Kenco, Kabupaten Landak, Provinsi Kalimantan Barat. Geological Engineering E-Journal, 6(1), 80–95. https://ejournal3.undip.ac.id/index.php/geologi/article/view/6754
Sanyoto, P., & Pieters, P. E. (1993). Peta Geologi Lembar Pontianak/ Nangataman, Kalimantan Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi. Bandung.
Tjokrokardono, S., & Soetarno, D. (2004). Studi Geologi Regional dan Mineralisasi Uranium di Pegunungan Schwaner Kalimantan Barat dan Tengah. Prosiding Seminar Geologi Nuklir dan Sumberdaya Tambang Tahun 2004, 64–84. https://inis.iaea.org/collection/NCLCollectionStore/_Public/39/123/39123070.pdf
Toreno, E. Y., & Moe’tamar. (2012). Karakteristik Cebakan Bauksit Laterit di Daerah Sepiluk – Senaning, Kabupaten Sintang, Kalimantan Barat. Buletin Sumber Daya Geologi, 7(2), 45–56. https://doi.org/10.47599/bsdg.v7i2.102
Wang, W., Feng, J., & Qui, M. (2023). Mineral Weathering and Element Migration in Granite Weathering Pits (Gnammas): A Case Study in Eastern China. Minerals, 13(1), 70. https://doi.org/10.3390/min13010070
Wakila, M. H., Heriansyah, A. F., Firdaus, F., & Nurhawaisyah, S. R. (2019). Pengaruh Tingkat Pelapukan Terhadap Kadar Nikel Laterit Pada Daerah Ussu, Kec. Malili Kab. Luwu Timur Prov. Sulawesi Selatan. Jurnal Geomine, 7(1), 30–35.
Winarno, T., Sendjaja, P., & Wibowo, F. R. (2023a). The Relationship Between Geological and Environmental Aspects with the Anomalies of Track Elements and Heavy Metal Elements in the Volcanic Area of the Muria Peninsula. E3S Web of Conferences, 448, 03067. https://doi.org/10.1051/e3sconf/202344803067
Winarno, T., Ali, R. K., Simangunsong, H., & Almiftahurrizqi, (2023b). Characteristics and Genesis of Laterite Bauxite in Sompak District and Surrounding Areas, Landak Regency, West Kalimantan. Indonesian Journal on Geoscience, 10(1), 37–49. https://ijog.geologi.esdm.go.id/index.php/IJOG/article/view/857
Wulansari, D., Setijadji, L. D., & Warmada, I. W. (2016). Karakterisasi Kandungan Mineral Dalam Bauksit Dengan Metode Xrd Semi-Kuantitatif Di Kawasan Tambang Tayan, Kalimantan Barat. Proceeding, Seminar Nasional Kebumian Ke-9, 612–623.
Zamaniana, H., Ahmadnejad, F., & Zarasvandi, A. (2016). Mineralogical And Geochemical Investigations of The Mombi Bauxite Deposit, Zagros Mountains, Iran. Geochemistry, 76(1), 13–37. https://doi.org/10.1016/j.chemer.2015.10.001
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).