Estimasi Model Regresi Kuantil Spline Kuadratik pada Data Trombosit dan Hematokrit Pasien DBD

Bunga Aprilia Bio | Anna Islamiyati Bio | Anisa Anisa Bio | Nirwan Ilyas Bio
Article History

Submited : February 2, 2020
Published : February 2, 2022

Nonparametric quantile regression is used to estimate the regression function when assumptions about the shape of the regression curve are unknown. It is only assumed to be subtle by involving quantile values. One estimator in nonparametric regression is spline. The segmented properties of the spline provide more flexibility than ordinary polynomials. Therefore, the nature of the spline makes it possible to adapt more effectively to the local characteristics of a function or data. This study proposes to get the results of the estimation platelet count model to the hematocrit value of DHF. The optimal model obtained from the estimation of quadratic spline quantile regression is at quantile 0.5 with one knot and the GCV value is 41.5. The results of the estimation show that there is a decrease in platelet counts as the percentage of hematocrit increase.

References

  1. Islamiyati, A., Fatmawati & Chamidah, N. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression. Journal of Physics: Conference Series, 979 (1) 012093, 2018.
  2. Yanuar, F. Penerapan Metode Regresi Kuantil pada Kasus Pelanggaran Asumsi Kenormalan Sisaan. Skripsi. Universitas Andalas. 2016.
  3. Balami, A.M. Estimasi Parameter Regresi Kuantil Pada Kasus Demam Berdarah Dengue di Kota Surabaya. Departemen Statistika FMIPA ITS, 2017.
  4. Nurdin, N., Raupong & Islamiyati, A. Penggunaan Regresi Robust pada Data yang Mengandung Pencilan dengan Metode Momen. Jurnal Matematika, Statistika & Komputasi, 10 (2) : 114-123, 2014.
  5. Aprilia, B., Islamiyati, A. & Anisa. Platelet Modeling Based On Hematocrit in DHF Patients with Spline Quantile Regression. International Journal of Academic and Applied Research, 3 (12) : 51-54, 2019.
  6. Furno, M. Prediction on Quantile Regression. Open Journal of Statistics, 4 : 504-517, 2014.
  7. Putri, W.N.A., Islamiyati, A. & Anisa. Penggunaan Regresi Multivariat pada Perubahan Trombosit Pasien Demam Berdarah Dengue. ESTIMASI: Journal of Statistics and Its Application, 1 (1) : 1-9, 2020.
  8. Islamiyati, A. Taksiran Kurva Regresi Spline pada Data Longitudinal dengan Kuadrat Terkecil. Jurnal Matematika, Statistika & Komputasi, 11(1) : 97-102, 2014.
  9. Ramdhani, Z.A., Islamiyati, A. & Raupong. Hubungan Faktor Kolesterol Terhadap Gula Darah Diabetes dengan Spline Kubik Terbobot. ESTIMASI: Journal of Statistics and Its Application, 1 (1) : 32-39, 2020.
  10. Arifin, S., Islamiyati, A. & Raupong. Kemampuan Estimator Spline Linear dalam Analisis Komponen Utama. ESTIMASI: Journal of Statistics and Its Application, 1 (1) : 40-47, 2020.
  11. Lestari, B., Fatmawati & Budiantara, I.N. Smoothing Spline Estimator in Multiresponse Nonparametric Regression for Predicting Blood Pressure and Heart Rate. International Journal of Academic and Applied Research, 3 (9) : 1-8, 2019.
  12. Islamiyati, A., Fatmawati & Chamidah, N. Fungsi Goodness of Fit dalam Kriteria Penalized Spline pada Estimasi Regresi Nonparametrik Birespon untuk Data Longitudinal. Proseding Seminar Nasional Matematika dan Aplikasinya. UNAIR Surabaya, 2017.
  13. Islamiyati, A., Fatmawati & Chamidah, N. Penalized Spline Estimator With Multi Smoothing Parameters in Biresponse Multipredictor Regression Model for Longitudinal Data. Songklanakarin Journal of Science and Technology, 42 (4) : 897-909, 2020.
  14. Islamiyati, A., Sunusi, N., Kalondeng, A., Wati, F. & Chamidah, N. Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-Variate Predictor Non-Parametric Regression Model. Journal of Sciences, Islamic Republic of Iran, 31 (2) : 175-183, 2020.
  15. Ahmad, R.R., Ghazali, N., Rambeli, A.S., Din, U. K. S. & Hassan, N. Application of Cubic Spline in the Implementation of Braces for the Case of a Child. Journal of Mathematics and Statistics, 8 (1) : 144-149, 2012.
  16. Islamiyati, A., Fatmawati & Chamidah, N. Changes in Blood Glucose 2 Hours After Meals in Type 2 Diabetes Patients Based On Length of Treatment at Hasanuddin University Hospital, Indonesia. Rawal Medical Journal, 45 (1) : 31-34, 2020.
  17. Islamiyati, A. Spline Polynomial Truncated dalam Regresi Nonparametrik. Jurnal Matematika, Statistika & Komputasi, 14 (1) : 54-60, 2017.
  18. Balami, A. M. & Matdoan, M.Y. Estimasi Parameter Regresi Kuantil dengan Fungsi Spline Truncated pada Kasus Demam Berdarah Dengue di Kota Surabaya. JURNAL MSA, 7 (1), 2019.
  19. Chen, Z., Chen, J. & Zhang, Q. Small Area Quantile Estimation Via Spline Regression and Empirical Likelihood. Statistics Canada, Catalogue No. 12-001-X, 2019.
  20. Jatmiko, Y.A. Analisis Regresi Kuantil B-Splines Monoton Naik pada Hubungan Rata-Rata Lama Sekolah dan Pengeluaran Rumah Tangga Per Kapita di Provinsi Yogyakarta. JURNAL MATEMATIKA “MANTIK”, 4 (2), 2018.
  21. Islamiyati, A., Raupong & Anisa. Use of Penalized Spline Linear to Identify Change in Pattern of Blood Sugar Based On the Weight of Diabetes Patients. International Journal of Academic and Applied Research, 3(12) : 75-78, 2019.
  22. Islamiyati, A. Regresi Spline Polynomial Truncated Biprediktor Untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue. Al khwarizmi, 7 (2) : 97-110, 2019.
  23. Syumarta, Y., Akmal, M. & Hanif, E. R. Hubungan Jumlah Trombosit, Hematokrit dan Hemoglobin dengan Derajat Klinik Demam Berdarah Dengue pada Pasien Dewasa di RSUP . M.Djamil Padang. 38, 492–498, 2013.

Downloads

Download data is not yet available.
Fulltext
statcounter