Penggunaan Regresi Kuantil Multivariat pada Perubahan Trombosit Pasien Demam Berdarah Dengue

Widya Nauli Amalia Puteri | Anna Islamiyati | Anisa Anisa Bio
Article History

Submited : January 28, 2020
Published : February 2, 2022

Quantile regression is an extension of the regression model of conditional quantile where the distribution is derived from the response variable expressed as a co-variate function. Quantile regression can model data that contain outliers. Patterns of platelet change in DHF patients based on body temperature and white blood cells were analyzed by quantile regression using θ = 0,25; 0,50, and 0,75. Based on the parameter estimation results, the quantile θ = 0,25 and 0,75 obtained variables that affect the platelets of DHF patients are white blood cells. Significant differences from the variables in each quantile occur because of the possibility of other factors that influence the platelets of DHF patients that are not contained in the model. The difference in the influence of factors on each quantile requires an appropriate adjustment of medical measures so that efficiency can be obtained in handling DHF patients.

References

  1. Budiantara, I. N., Mariati, N.P.A.M, Ratnasari, V., Ismaini, Z., Ratna, M., Sudiarsa, I.W., Mardianto, M.F.F., & Hendayanti, N.P.N. Comparison Truncated Spline and Fourier Series in Multivariable Nonparametric Regression Models (Application: Data of Poverty in Papua, Indonesia). International Journal of Basic & Applied Sciences IJBAS-IJENS. 15 (04) : 9-12, 2015.
  2. Islamiyati, A., Fatmawati & Chamidah, N. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression. Journal of Physics: Conf. Series. 979 pp 012093, 2018.
  3. Islamiyati, A. Taksiran Kurva Regresi Spline pada Data Longitudinal dengan Kuadrat Terkecil. Jurnal Matematika, Statistika & Komputasi, 11(1) : 97-102, 2014.
  4. Islamiyati, A. Spline Polynomial Truncated dalam Regresi Nonparametrik. Jurnal Matematika, Statistika & Komputasi, 14(1) : 54-60, 2017.
  5. Nurdin, N., Raupong & Islamiyati, A. Penggunaan Regresi Robust pada Data yang Mengandung Pencilan dengan Metode Momen. Jurnal Matematika, Statistika & Komputasi, 10(2) : 114-123, 2014.
  6. Islamiyati, A., Fatmawati & Chamidah, N. Ability of Covariance Matrix in Bi-Response Multi-Prredictor Penalized Spline Model Through Longitudinal Data Simulation. Int. J. Acad. Appl. Res. 3 : 8-11, 2019.
  7. Davino, C., Furno, M., & Vistocco, D. Quantile Regression: Theory and Applications. Wiley Series in Probablity and Statistics. 2013.
  8. Huang, Q., Zhang, H., Chen, J. & He, M. Quantile Regression Models and Their Applications: A review. Journal of Biometric & Biostatistics, 8(3) : 1-6, 2017.
  9. Yirga, A.A., Ayele, D.W., & Melesse, S.F. Application of Quantile Regression : Modeling Body Mass Index in Ethiopia. The Open Public Health Journal, 11, 221-223, 2018.
  10. Sauzet, O., Razum, O., Widera, T. & Brzoska, P. Two Part Models and Quantile Regression for the Analysis of Survey Data with a Spike. The Example of Satisfaction with Health Care. Frointers Publich Health, 7 (146) : 1-7, 2019.
  11. Jagger. T.H., & Elsner, J.B. Modeling tropical cyclone intensity with quantile regression”. Int. J. Climatol. Published online in Wiley Inter Science (www.interscience.wiley.com), 2008.
  12. Djuraidah, A. & Wigena, A.H. Regresi Kuantil Untuk Eksplorasi Curah Hujan di Kabupaten Indramayu. J Ilmu Dasar. 12(1):50-56, 2011.
  13. Mahmuda, L.N., Nur, I.M., & Karim, A. Regresi Kuantil sebagai Penduga Kadar Timbal (Pb) dalam Tubuh Pekerja SPBU di Kota Semarang. Jurnal Statistika, 3 (2), 2015.
  14. Balami, A.M. Estimasi Parameter Regresi Kuantil Pada Kasus Demam Berdarah Dengue di Kota Surabaya. Departemen Statistika FMIPA ITS, 2017.
  15. Idris, N., Rais, & Utami, I.T. Aplikasi Regresi Kuantil Pada Kasus DBD di Kota Palu Sulawesi Tengah. Jurnal Ilmiah Matematika dan Terapan, 15 (1) : 108-117, 2018.
  16. Islamiyati, A. Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue. Al khwarizmi, 7 (2) : 97-110, 2019.
  17. Aprilia, B., Islamiyati, A. & Anisa. Platelet Modeling Based on Hematocrit in DHF Patients with Spline Quantile Regression. Int. J. Acad. Appl. Res., 3 : 51-54, 2019.
  18. Risniati, Y., Tarigan, L.H, & Tjitra, E. Leukopenia Sebagai Prediktor Terjadinya Sindrom Syok Dengue Pada Demam Berdarah Dengue di RSPI. Prof. Dr. Sulianti Saroso. Media Litbang Kesehatan, 21 : 96-103, 2011.
  19. Islamiyati, A., Fatmawati & Chamidah, N. Changes in blood glucose 2 hours after meals in Type 2 diabetes patients based on length of treatment at Hasanuddin University Hospital, Indonesia. Rawal Medical Journal, 45 (1) : 31-34, 2020.

Downloads

Download data is not yet available.
Fulltext
statcounter