Analisis Sentimen Survei Regsosek pada Twitter Menggunakan Algoritma K-Nearest Neighbor (K-NN)

Article History

Submited : February 20, 2023
Published : August 4, 2023

Indonesia in 2022, will experience a shift in adaptation to recovery from the pandemic as well as rising global commodity prices due to the impact of the Ukraine-Russia war. The government in its efforts to deal with this situation, one of which is by transforming data into one data through the 2022 Social Economic Registration (Regsosek) as a requirement for social protection system reform. However, in practice, Research and Research has become quite a public concern, where the content is almost the same as previous surveys conducted by BPS, which raises questions about the effectiveness of this survey. This study aims to determine the sentiments of each opinion on social media Twitter regarding 2022 Social Security. This research implements the K-Nearest Neighbor (K-NN) method to analyze sentiment in tweets. Data obtained from Twitter by scrapping. The polarity percentage results from the tweets obtained are dominated by negative opinions. The best application of the K-Nearest Neighbor (K-NN) algorithm is using the parameter k = 3. The model built shows very good performance with an accuracy of 96%, a recall of 100%, and a precision of 0,96%.

References

  1. Badan Pusat Statistik Kota Lhokseunawe. Pendataan Awal Registrasi Sosial Ekonomi (REGSOSEK) Tahun 2022. Lhokseunawe: Badan Pusat Statistik Kota Lhokseunawe. 2022.
  2. Badan Pusat Statistik Kabupaten Kapuas. Pendataan Awal Registrasi Sosial Ekonomi (REGSOSEK) Tahun 2022. Kapuas: Badan Pusat Statistik Kabupaten Kapuas. 2022.
  3. Fauziyyah, A. K. Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python. Jurnal Ilmiah SINUS, 18(2):31, 2020.
  4. Rofiqoh, U., Setya, Perdana R., & Fauzi, M. A. Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features [Internet]. Vol. 1. 2017. Available from: http://j-ptiik.ub.ac.id
  5. Somantri, O. JEPIN (Jurnal Edukasi dan Penelitian Informatika) Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining. 2019; Available from: www.google.com/maps
  6. Furqan, M., & Mayang, S. S. Ilmu Komputer Fakultas Sains dan Teknologi P. Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia Sentiment Analysis using K-Nearest Neighbor towards the New Normal During the Covid-19 Period in Indonesia [Internet]. Vol. 21. 2022. Available from: www.tripadvisor.com
  7. Astar, N., Dewa G. H. D., & Gede, I. Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier. Jurnal Sistem dan Informatika (JSI), 15(1):9-27, 2020.
  8. Mika, P. I. M., & Siahaan, D. Classification of Mobile Application Reviews using Word Embedding and Convolutional Neural Network. Jurnal Ilmiah Teknologi Informasi. 18, 2019 .
  9. Gilyarovskaya, E. A. Automated classification of service reports using natural language processing techniques. 2021.
  10. Saadah, M. N., Atmagi, R. W., Rahayu D, S., & Arifin, A. Z. Sistem Temu Kembali Dokumen Teks dengan Pembobotan Tf-Idf Dan LCS. 2013.
  11. Hamzah, F., Astuti, W., & Purbolaksono, M. D. Sentiment Analysis pada movie review menggunakan Feature Selection Chi Square dan Support Vector Machine Classifier. e-Proceeding of Engineering, 9, 2022.
  12. Harun, R., Chandra P. K., & Lasena, Y. Penerapan Data Mining Untuk Menentukan Potensi Hujan Harian Dengan Menggunakan Algoritma K Nearest Neighbor (KNN) [Internet]. Jurnal Manajemen informatika & Sistem Informasi, 3, 2020. Available from: http://e-journal.stmiklombok.ac.id/index.php/misi
  13. Arora, I., Khanduja, N., & Bansal, M. Effect of Distance Metric and Feature Scaling on KNN Algorithm while Classifying X-rays. 2021.
  14. Kataria, A., Singh MD. International Journal of Emerging Technology and Advanced Engineering A Review of Data Classification Using K-Nearest Neighbour Algorithm [Internet]. Vol. 9001, Certified Journal. 2008. Available from: www.ijetae.com
  15. Yudhana, A., & Agus J. S. H. Algoritma K-NN Dengan Euclidean Distance Untuk Prediksi Hasil Penggergajian Kayu Sengon. TRANSMISI, 22(4), 2020. Available from: https://ejournal.undip.ac.id/index.php/transmisi
  16. Deviyanto, A., Didik, W. M. R., Informatika UIN Sunan Kalijaga Yogyakarta Jl Marsda Adi Sucipto No T. Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor. Jurnal Informatika Sunan Kalijaga.
  17. Chicco, D., Tötsch, N., & Jurman, G. The matthews correlation coefficient (Mcc) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData, 14:1–22, 2021.

Downloads

Download data is not yet available.
Fulltext
statcounter