Penerapan Metode Linearized Ridge Regression pada Data yang Mengandung Multikolinearitas

Article History

Submited : December 8, 2021
Published : February 14, 2023

One of the assumptions that must be met in the multiple linear regression model is that there is no multicollinearity problem among the independent variables. However, if there is a multicollinearity problem, then parameter estimation can be done using the linearized ridge regression (LRR) method. The LRR method has the advantage of choosing an optimal constant that is easy to determine and also has a minimum PRESS value. In this study, the infant mortality rate in South Sulawesi Province will be modeled using the LRR method based on the variables of the amount of vitamin A given, the number of health services, the number of babies born with low weight, the number of mothers who give birth assisted by medical personnel, and the number of babies who are breastfed. exclusive. One measure to see the goodness of the regression model is the Prediction Error Sum of Squares (PRESS). Based on the t-test at a significance level of 5%, the total coverage of vitamin A administration and the number of babies born with low weight gave a significant effect on infant mortality with a PRESS value of 0.6846.

References

  1. Angelin, I. (2021). Penggunaan Metode Regresi Akar Laten Robust Pada Data Yang Mengandung Multikolinearitas dan Outlier. Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin.
  2. Dinas Kesehatan (2020). Profil Kesehatan Provinsi Sulawesi Selatan Tahun 2020. Pusat Data dan Informasi, Makassar.
  3. Montgomery, D. C., Peck, E. A., & Vining, G. (2021). Introduction to Linier Regression Analysis. Fifth Edition. United States: John Wiley & Sons, Inc.
  4. Apriani, W. R. (2014). Taksiran Linearized Ridge regression Sebagai penaksir Parameter Regresi Linier Berganda Pada Kasus Multikolinearitas. Matematika dan Ilmu Pengetahuan Alam, Univerisitas Indonesia.
  5. Liu, Q. X., & Gao, F. (2011). Linierized Ridge Regression Estimator in Linier Regression. Communications in Statistics-Theory and Methods, 40(12), 2182-2192
  6. Allen, D. M. (1974). Mean Square Error of Prediction as a Criterion for Selection Variables. Technometrics, 13(3), 469-475.

Downloads

Download data is not yet available.
Fulltext
statcounter