The Comparison of Inverse Gaussian and Gamma Regression: Application on Stunting Data in Jepara
DOI:
https://doi.org/10.20956/j.v21i1.36351Keywords:
inverse Gaussian regression, Gamma regression, Maximum Likelihood Estimation, Maximum Likelihood Ratio TestAbstract
Many research data have distributions other than the normal distribution, called exponential family distributions. The exponential family of distributions includes the inverse Gaussian and Gamma distributions. There are parallels between these two distributions in terms of the kind of random variable and how well they work. Finding the optimal model using inverse Gaussian and Gamma regression on stunting data in Jepara is the goal of this study. Maximum Likelihood Estimation is used for parameter estimation, Maximum Likelihood Ratio Test is used for simultaneous parameter testing, and Wald testing is used for partial parameter testing. For this case, the best model is inverse Gaussian regression. Exclusive breastfeeding, low birth weight babies, clean drinking water facilities, and the number of Integrated Service Post (Posyandu) influence the percentage of stunting in Jepara..Downloads
References
Akaike, H., 1974. A New Look at The Statistical Model Identification, IEEE Trans Automat Contr, Vol. 19, No. 6, 1974, pp. 122-134.
Awasthi, P., Das, A., Sen, R. & Suresh, A.T., 2022. On the benefits of maximum likelihood estimation for Regression and Forecasting, Conference on Neural Information Processing Systems, Vol. 16, No. 7, pp. 47-56.
Bain, L.J. & Engelhardt, 1992. Introduction to Probability and Mathematical Statistics. Duxbury Press, California.
Belsley, D.A., 1991. Conditioning diagnostics: Collinearity and weak data in regression. John Wiley & Sons, Inc., New York.
Cox, C., Haitao, C., Alvaro, M. & Scheneiders, M.F., 2007. Parametic survival analysis and taxonomy of hazard functions for the generalized gamma distribution, Stat Med, Vol. 26, No.23, pp. 4352-4374.
De Jong, P. & Heller, G. Z., 2008. Generalized Linear Models for Insurance Data. Cambridge University Press, New York.
Jayalath, K.P. & Chhikara, R.S., 2020. Survival analysis for the inverse Gaussian distribution with the Gibbs sampler, Journal Application Statistics, Vol. 49, No.3, pp. 656–675.
Khoiriyah, H. & Ismarwati, I., 2023. Faktor Kejadian Stunting Pada Balita : Systematic
Kiche, J., Ngesa, O. & Orwa, G., 2019. On Generalized Gamma Distribution and Its Application to Survival Data, Internation Journal of Statistitcs and Probability, Vol. 8, No.5, pp. 86-102.
Kuan, C., 2017. Introduction to The Inverse Gaussian Distribution. Inferential Statistics Journal, Vol. 13, No. 4, pp. 120–126.
McCullagh, P. & Nelder, J. A., 1989. Generalized Linear Models, Second Edition. Chapman & Hall, London.
Ng, V. K. Y. & Cribbie, R.A., 2017. Using the Gamma Generalized Linear Model for Modeling Continuous, Skewed and Heteroscedastic Outcomes in Psychology, Current Psychology, Vol. 36, No. 2, pp. 225–235.
Nisa, E.K. & Miasary, S.D., 2024. Parameter estimation and application of inverse Gaussian regression, AIP Conf. Proc., Vol. 3046, pp. 020008-1–020008-8.
Sandjojo, E.P., 2017. Buku Saku Desa dalam Penanganan Stunting, Kementrian Desa,Pembangunan Daerah Tertinggal dan Transmigrasi, Jakarta.
Schworer, A. & Hovey, P., 2004. Newton-Raphson Versus Fisher Scoring Algorithms in Calculating Maximum Likelihood Estimates, Undergraduate Mathematics Day-Electronic Proceedings, Vol.10, No.1, pp. 1-11.
Seshadri, V., 1999. The Inverse Gaussian Distribution Statistical Theory and Applications, Springer Science+Business Media, Canada.
Shrestha, N., 2020. Detecting Multicollinearity in Regression Analysis, Am J Appl Math Stat, Vol. 8, No. 2, pp. 39–42.
Tirta, I.M., 2008. Pengantar Statistika Matematika. FMIPA Universitas Jember, Jember.
Villaseñor, J.A. & González-Estrada, E., 2015. A variance ratio test of fit for Gamma distributions, Statistics & Probability Letters, Vol. 96, No. 10. pp. 281–286.
Wang, S., Chen, W., Chen, M. & Zhou, Y., 2021. Maximum likelihood estimation of the parameters of the inverse Gaussian distribution using maximum rank set sampling with unequal samples, Mathematical Population Studies:An International Journal of Mathematical Demography, Vol. 30, No. 1, pp. 1-21.
Widyaningsih, P., Saputro, D.R.S. & Putri, A.N., 2017. Fisher Scoring Method for Parameter Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model. Journal of Physics: Conference Series, Vol. 855, pp. 47-56.
Wilks, S.S., 1938 The Large Sample Distribution of The Likelihood Ratio for Testing Composite Hypotheses, The Annals of Mathematical Statistics, Vol. 9, No.1, pp. 60-62.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Matematika, Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.