The Robust Negative Binomial Regression Model on Under-five Mortality due to Pneumonia in the Province of East Java

Authors

  • Anggun Qur'ani Mathematics Study Programme, Udayana University, Indonesia
  • Chandra Sari Widyaningrum Master of Mathematics Programme, Universitas Gadjah Mada, Indonesia
  • Sa’adatur Rohimiyah Department of Nursing, Poltekkes Kemenkes Surabaya, Indonesia

DOI:

https://doi.org/10.20956/j.v21i1.34512

Keywords:

Robust Negative Binomial Regression (RNBR), Immunity, Toddler Mortality, Pneumonia

Abstract

Robust Negative Binomial regression model (RNBR) is a modelling method to overcome a problem if there are outliers and overdispersion in the data. Outliers are data points that are significantly different from other data. Outliers have a significant effect on modelling to the resulting model. Furthermore, overdispersion is indicated by the presence of too large values of Pearson statistics. In this study, the RNBR model was used to determine the factors of the toddler immune variable at post neonatal age that significantly influenced the number of under-five deaths caused by pneumonia in East Java Province. Based on the modelling obtained, it shows that the RNBR model provides more robust results in handling outlier and overdispersion problems. This can be seen from the AIC value of the RNBR model is smaller than the AIC of the Poisson regression model. In addition, and which are measures of the influence of outliers on the model, decreased from 1 for the Poisson regression model to around 0.42 for the RNBR model.

Downloads

Download data is not yet available.

References

Aeberhard, W.H., Cantoni, E. and Heritier, S., 2014. Robust inference in the negative binomial regression model with an application to falls data. Biometrics, Vol. 70, No. 4, 920–931.

Aggarwal, C.C., 2017. Outlier Analysis. Springer International Publishing, Cham.

Agresti, A., 2013. Categorical Data Analysis (3rd ed.). Wiley Interscience, New Jersey. Belum ditulis

Banhae, Y.K., Abanit, Y.M. and Namuwali, D., 2023. Faktor Risiko yang Berhubungan dengan Kejadian Pneumonia pada Balita di Kota Kupang. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, Vol. 13, No. 3, 1099–1106.

Beath, K., 2022. Robust Generalized Linear Models (GLM) using Mixtures. CRAN R, Package, (May 2022).

Bhar, L., 2007. Robust Regression. Course Online, Indian Agricultural Statistics Research Institute (I.C.A.R.), New Dehli.

BPS Jatim., 2023. Jumlah Jenis Penyakit Malaria, TB Paru, Pneumonia, Kusta Menurut Kabupaten/Kota di Provinsi Jawa Timur Tahun 2022. Badan Pusat Statistik Provinsi Jawa Timur, Surabaya.

Breushch, T.S. and Pagan, A.R., 1979. A Simple Test For Heteroscedasticity And Random Coefficient Variation. Econometrica, Vol. 47, No. 5, 1287–1294.

Croux, C., 2003. The Poisson Regression Model. Online Course, KU Leuven, Netherland.

Dinas Kesehatan Jatim., 2023. Profil Kesehatan Provinsi Jawa Timur Tahun 2022. Dinas Kesehatan Provinsi Jawa Timur, Surabaya.

Facrotul, N., 2023. Pemetaan Kasus Pneumonia Balita Di Jawa Timur Berdasarkan Hasil Pemodelan Dengan Geographically Weighted Negative Binomial Regression (GWNBR). Tesis Diploma, Institut Teknologi Sepuluh November, Surabaya.

Gelman, A. and Hills, J., 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.

Girma, F., Ayana, M., Abdissa, B., Aboma, M., Ketema, D., Kolola, T. and Wake, S.K., 2023. Determinants of under-five pneumonia among children visited in nine public health Hospitals in Ethiopia. Clinical Epidemiology and Global Health, Vol. 24, 101441, 1-6.

Gross, J. and Ligges, U., 2015. Tests for Normality. CRAN R, Packages, (Jul. 2015).

Hothorn, T., Zeileis, A., Farebrother, R.W., Cummins, C., Millo, G. and Mitchell, D., 2022. Testing Linear Regression Models. CRAN R, Packages, (Mar. 2022).

Jansakul, N. and Hinde, J.P., 2004. Linear mean-variance negative binomial models for analysis of orange tissue-culture data. Songklanakarin Journal of Science and Technology, Vol. 26, No. 5, 683-696.

Kemenkes RI., 2021. Profil Kesehatan Indonesia Tahun 2021. Kementerian Kesehatan Republik Indonesia, Jakarta.

Lüdecke, D., Makowski, D., Ben-Shachar, M.S., Patil, I., Waggoner, P., Wiernik, B.M., Arel-Bundock, V., Thériault, R., Jullum, M. and Bacher, E., 2023. Assessment of Regression Models Performance. CRAN R, Package, (Oct. 2023).

McCullagh, P. and Nelder, J.A., 1989. Generalized Linier Models. Chapman And Hall, New York.

Molla, D.T. & Muniswamy, B., 2012. Power of Tests for Overdispersion Parameter in Negative Binomial Regression Model. IOSR Journal of Mathematics (IOSRJM), Vol. 1, No. 4, 29–36.

Montgomery, D.C., Peck, E.A. and Vining, G.G., 2001. Introduction to Linear Regression Analysis. John Wiley & Sons, New York.

Nugroho, P.A. and Danardono, D., 2016. Pemodelan Data Cacah Excess Zero Menggunakan Model Berbasis Poisson Dan Binomial Negatif. Tesis, Universitas Gadjah Mada, Yogyakarta.

Nuraini, H. & Febriana, F., 2023. Peningkatan Pengetahuan Mengenali Tanda Kegawatan Pneumonia dan Penanganannya pada Anak Setelah dilakukan Penyuluhan Kesehatan. SIGDIMAS : Publikasi Kegiatan Pengabdian Masyarakat, Vol. 1, No. 1, 35–40.

Owusu, S., 2018. Analysis Of The Effects Of Overdispersion In Population Dynamics. A Research Thesis, Pan African University, Cameroun.

Qur’ani, A.Y., 2023. Pemodelan Principal Component Regression Analysis dari Faktor Penanganan Stunting saat Pandemi Covid-19 di Indonesia. Ulil Albab, Vol. 2, No. 8, 3922–3931.

Romeu, J.L., 2003. Anderson-Darling: A Goodness of Fit Test for Small Samples Assumptions. START : Selected Topics in Assurance Related Technologies, Vol. 10, No. 5, 1–6.

Rustiyanto, E., 2012. Faktor Risiko Kejadian Pneumonia Pada Balita (Studi Kasus Di Puskesmas Umbulharjo II Kota Yogyakarta). Tesis, Universitas Diponegoro, Semarang.

Santika, E.F., 2023. Pneumonia Jadi Penyebab Terbesar Kematian Balita di Dunia 2021. Databoks, Layanan Konsumen & Kesehatan. https://databoks.katadata.co.id/datapublish/2023/12/04/pneumonia-jadi-penyebab-terbesar-kematian-balita-di-dunia-2021. [9 Februari 2024]

Setyawan, Y., Suryowati, K. and Octaviana, D., 2022. Application of Negative Binomial Regression Analysis to Overcome the Overdispersion of Poisson Regression Model for Malnutrition Cases in Indonesia. Parameter: Journal of Statistics., Vol. 2, No. 2, 1–9.

Solomon, Y., Kofole, Z., Fantaye, T. and Ejigu, S., 2022. Prevalence of pneumonia and its determinant factors among under-five children in Gamo Zone, Southern Ethiopia, 2021. Frontiers in Pediatrics, Vol. 10, 1017386, 1-8.

Symonds, M.R.E. and Moussalli, A., 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, Vol. 65, No. 1, 13–21.

Tan, S.Z., 2021. The Robustness of Count Models in the Presence of Measurement Error and Process Error. Thesis, University Of Helsinki, Finland.

Utami, P.F., Rusgiyono, A. and Ispriyanti, D., 2021. Pemodelan Semiparametric Geographically Weighted Regression Pada Kasus Pneumonia Balita Provinsi Jawa Tengah. Jurnal Gaussian, Vol. 10, No. 2, 250–258.

Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K., 2017. Probability & statistics for engineers & scientists: MyStatLab update. Pearson, Boston.

Downloads

Published

2024-09-15

How to Cite

Qur’ani, A., Widyaningrum, C. S. ., & Rohimiyah, S. . (2024). The Robust Negative Binomial Regression Model on Under-five Mortality due to Pneumonia in the Province of East Java. Jurnal Matematika, Statistika Dan Komputasi, 21(1), 176-189. https://doi.org/10.20956/j.v21i1.34512

Issue

Section

Research Articles