Analysis of Academic Hardiness Factors Affecting Student Emotional Exhaustion in Malang Using Logit and Probit Models

Authors

  • Siti Nuradilla Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia

DOI:

https://doi.org/10.20956/j.v20i3.33220

Keywords:

academic hardiness, emotional exhaustion, ordinal logit regression, ordinal probit regression

Abstract

The prevalence of emotional exhaustion as an indication of academic burnout among students during online learning is very high. Responding to the issues and neglect of studies on academic burnout, it is necessary to analyze the factors of academic hardiness among students in Malang City regarding emotional exhaustion. The ordinal probit regression model yields the best fit with 120 samples in analyzing the factors of academic hardiness on emotional exhaustion due to its smaller AIC value. Significant factors affecting emotional exhaustion are commitment to academic tasks (), control over struggle (), and control individual difficulties (). The ordinal probit regression model obtained is  and . The marginal effect states that for every one-unit change in the ratio  will increase students low emotional exhaustion by 0.016, and decrease students moderate emotional exhaustion by 0.044, and high emotional exhaustion by 0.060. Every one-unit change in the ratio  will decrease students low emotional exhaustion by 0.018, and increase students moderate emotional exhaustion by 0.049, and high emotional exhaustion by 0.067. Every one-unit change in the ratio  will increase students low emotional exhaustion by 0.025, and decrease students moderate emotional exhaustion by 0.070, and high emotional exhaustion by 0.095.

Downloads

Download data is not yet available.

References

. Agresti, A., 2007. An Introduction to Categorical Data Analysis, Second. ed. Wiley-Interscience, New York.

. Agusriani, A., Fauziddin, M., 2021. Strategi Orangtua Mengatasi Kejenuhan Anak Belajar dari Rumah Selama Pandemi Covid-19. JO 5, 1729–1740. https://doi.org/10.31004/obsesi.v5i2.961

. Allison, P.D., 2008. 360-2008: Convergence Failures in Logistic Regression 11.

. Anjum, R., 2022. Role of Hardiness and Social Support in Psychological Well-Being Among University Students. MJESTP 89–102. https://doi.org/10.52634/mier/2022/v12/i1/2172

. Ari, E., Yildiz, Z., 2014. PARALLEL LINES ASSUMPTION IN ORDINAL LOGISTIC REGRESSION AND ANALYSIS APPROACHES 1, 17.. Ari and Z. Yildiz, “PARALLEL LINES ASSUMPTION IN ORDINAL LOGISTIC REGRESSION AND ANALYSIS APPROACHES,” vol. 1, no. 3, p. 17, 2014.

. Asiwe, D.N., Jorgensen, L.I., Hill, C., 2014. The development and investigation of the psychometric properties of a burnout scale within a South African agricultural research institution. SA j ind psychol 40, 14 pages. https://doi.org/10.4102/sajip.v40i1.1194

. Azizah, N., Kardiyem, 2020. Pengaruh Perfeksionisme, Konformitas, dan Media Sosial terhadap Prokrastinasi Akademik dengan Academic Hardiness sebagai Variabel Moderasi 14.

. Bender, R., 1997. Ordinal Logistic Regression in Medical Research 6

. Cahyawati, D., Gunarto, M., 2021. Persepsi mahasiswa terhadap pembelajaran daring pada masa pandemi Covid-19. jitp 7, 150–161. https://doi.org/10.21831/jitp.v7i2.33296

. Cheng, Y.-H., Tsai, C.-C., Liang, J.-C., 2019. Academic hardiness and academic self-efficacy in graduate studies. Higher Education Research & Development 38, 907–921. https://doi.org/10.1080/07294360.2019.1612858

. Christensen, J., Bastien, C., 2016. Chapter | three - Introduction to General Optimization Principles and Methods 62. https://doi.org/10.1016/B978-0-12-417297-5.00003-1

. Fagerland, M.W., Hosmer, D.W., 2017. How to Test for Goodness of Fit in Ordinal Logistic Regression Models. The Stata Journal 17, 668–686. https://doi.org/10.1177/1536867X1701700308

. Fatonah, L., Sanapiah, S., Febrilia, B.R.A., 2019. Regresi Logistik Ordinal (Studi Kasus Faktor Yang Mempengaruhi Tingkat Stres Mahasiswa Dalam Menyelesaikan Skripsi). Media. Pembelajaran. Matematika 5, 146. https://doi.org/10.33394/mpm.v5i2.1501

. Giri, N.C., 2004. Multivariate statistical analysis, 2nd ed., rev.expanded. ed, Statistics, textbooks and monographs. Marcel Dekker, New York.

. Gnetchejo, P.J., Ndjakomo Essiane, S., Dadjé, A., Ele, P., 2021. A combination of Newton-Raphson method and heuristics algorithms for parameter estimation in photovoltaic modules. Heliyon 7, e06673. https://doi.org/10.1016/j.heliyon.2021.e06673

. Greene, W.H., 2003. Econometric analysis, 5th ed. ed. Prentice Hall, Upper Saddle River, N.J.

. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., 2019. Multivariate data analysis, Eighth edition. ed. Cengage, Andover, Hampshire.

. Hosmer, D.W., Lemeshow, S., Sturdivant, R.X., 2013. Applied logistic regression, Third edition. ed, Wiley series in probability and statistics. Wiley, Hoboken, New Jersey.

. İşçi, Ö., Durmuş, B., İncekırık, A., 2022. Ordered Choice Models: Ordinal Logit and Ordinal Probit 6

. Jia, J., Wang, L., Xu, J., Lin, X., Zhang, B., Jiang, Q., 2021. Self-Handicapping in Chinese Medical Students During the COVID-19 Pandemic: The Role of Academic Anxiety, Procrastination and Hardiness. Front. Psychol. 12, 741821. https://doi.org/10.3389/fpsyg.2021.741821

. Kook, L., Herzog, L., Hothorn, T., Dürr, O., Sick, B., 2021. Deep and interpretable regression models for ordinal outcomes. arXiv:2010.08376 [cs, stat].

. Koropets, O., Fedorova, A., Kacane, I., 2019. EMOTIONAL AND ACADEMIC BURNOUT OF STUDENTS COMBINING EDUCATION AND WORK. Presented at the 11th International Conference on Education and New Learning Technologies, Palma, Spain, pp. 8227–8232. https://doi.org/10.21125/edulearn.2019.2038

. Lubis, H., Ramadhani, A., Rasyid, M., 2021. Stres Akademik Mahasiswa dalam Melaksanakan Kuliah Daring Selama Masa Pandemi Covid 19. Psikostudia 10, 31. https://doi.org/10.30872/psikostudia.v10i1.5454

. Muflihah, L., Savira, S.I., 2021. PENGARUH PERSEPSI DUKUNGAN SOSIAL TERHADAP BURNOUT AKADEMIK SELAMA PANDEMI. . Character 08, 11.

. Nur’eni, N., Handayani, L., 2020. Regresi Probit untuk Analisis Variabel-Variabel yang Mempengaruhi Perceraian di Sulawesi Tengah. asks 12, 13. https://doi.org/10.34123/jurnalasks.v12i1.211

. Nurmalasari, R., Ispriyanti, D., 2017. ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PEMBANGUNAN MANUSIA (IPM) MENGGUNAKAN METODE REGRESI LOGISTIK ORDINAL DAN REGRESI PROBIT ORDINAL 6, 10.

. Pawicara, R., Conilie, M., 2020. Analisis Pembelajaran Daring terhadap Kejenuhan Belajar Mahasiswa Tadris Biologi IAIN Jember di Tengah Pandemi Covid-19. alveoli 1, 29–38. https://doi.org/10.35719/alveoli.v1i1.7

. Portet, S., 2020. A primer on model selection using the Akaike Information Criterion. Infectious Disease Modelling 5, 111–128. https://doi.org/10.1016/j.idm.2019.12.010

. Pratitis, N.T., Suroso, S., Cahyanti, R.O., Sa’idah, F.L.S., 2021. Self Regulated Learning dan Dukungan Sosial dengan Prokrastinasi Akademik pada Mahasiswa di Masa Pandemi. soshum 2, 1–7. https://doi.org/10.24123/soshum.v2i1.3953

. Putri, N.I., Budyanra, B., 2020. Penerapan Regresi Logistik Ordinal Dengan Proportional Odds Model Pada Determinan Tingkat Stres Akademik Mahasiswa. semnasoffstat 2019, 368–378. https://doi.org/10.34123/semnasoffstat.v2019i1.104

. Rondonuwu, V.W.K., Mewo, Y.M., Wungow, H.I.S., 2021. Pendidikan Kedokteran di Masa Pandemi COVID-19 Dampak Pembelajaran Daring Bagi Mahasiswa Fakultas Kedokteran Angkatan 2017 Unsrat. JBM 13, 67. https://doi.org/10.35790/jbm.13.1.2021.31764

. Senaweera, O., S. Haddela, P., Dharmarathne, G., 2021. Effects of Random Sampling Methods on Maximum Likelihood Estimates of a Simple Logistic Regression Model. AJAMS 9, 28–37. https://doi.org/10.12691/ajams-9-1-5

. Setyaningrum, D.A., Sirait, T., 2021. PEMODELAN LOGIT, PROBIT, DAN COMPLEMENTARY LOG-LOG. semnasoffstat 2020, 429–438. https://doi.org/10.34123/semnasoffstat.v2020i1.383

. Shrestha, N., 2020. Detecting Multicollinearity in Regression Analysis. AJAMS 8, 39–42. https://doi.org/10.12691/ajams-8-2-1

[[35]. Sokal, L., Trudel, L.E., Babb, J., 2020. Canadian teachers’ attitudes toward change, efficacy, and burnout during the COVID-19 pandemic. International Journal of Educational Research Open 1, 100016. https://doi.org/10.1016/j.ijedro.2020.100016

. Sugiyono, 2019. Metode Penelitian & Pengembangan: Research and Development. Alfabeta, Bandung.

. Wardani, R., 2020. ACADEMIC HARDINESS, SKILLS, AND PSYCHOLOGICAL WELL-BEING ON NEW STUDENT. Jurnal Psikologi 19, 188–200. https://doi.org/10.14710/jp.19.2.188-200

. Yavuz, G., Dogan, N., 2014. Maslach Burnout Inventory-Student Survey (MBI-SS): A Validity Study. Procedia - Social and Behavioral Sciences 116, 2453–2457. https://doi.org/10.1016/j.sbspro.2014.01.590

. Zhou, H., Chen, J., 2021. How Does Psychological Empowerment Prevent Emotional Exhaustion? Psychological Safety and Organizational Embeddedness as Mediators. Front. Psychol. 12, 546687. https://doi.org/10.3389/fpsyg.2021.546687

. Zhou, J., Zheng, T., Dong, S., Mao, X., Ma, C., 2022. Impact of Helmet-Wearing Policy on E-Bike Safety Riding Behavior: A Bivariate Ordered Probit Analysis in Ningbo, China. IJERPH 19, 2830. https://doi.org/10.3390/ijerph19052830

Downloads

Published

2024-05-15

How to Cite

Nuradilla, S. . (2024). Analysis of Academic Hardiness Factors Affecting Student Emotional Exhaustion in Malang Using Logit and Probit Models. Jurnal Matematika, Statistika Dan Komputasi, 20(3), 606-622. https://doi.org/10.20956/j.v20i3.33220

Issue

Section

Research Articles