Comparison Predictions of the Demam Berdarah Dengue (DBD) using Model Exponential Smoothing: Pegel’s Classification and ChatGPT
DOI:
https://doi.org/10.20956/j.v20i2.32122Keywords:
prediction, pegel's classification, demam berdarah, GPPT-3, AIAbstract
The evolution of AI since the Covid-19 pandemic has developed very rapidly. Until 2023, AI is claimed to be a threat to several professional jobs, especially data analysts and scientists. The purpose of this research is to check the effectiveness chat-GPT to predict about demam berdarah dengue (DBD) case. Method of the analyzing the data in this research is Mixed method. Quantitative method using exponential smoothing: pegel’s classification and qualitative method using GPT-3. The aim of this research is to check whether ChatGPT can predict the demam berdarah dengue (DBD) data time series. The prediction result are check it by exponential smoothing: pegel’s classification method. The benefit of this research is it can be used to reference how far the evolution of AI can be threaten the profession of data analyst or data scientist. The result of this study conclude that the ChatGPT (GPT-3) can’t predict DBD’d data correctly.Downloads
References
Dewi, I.R, 2023. Sederet Pekerjaan Terancam Punah Siap Siap Ganti Profesi. Avalaible at : https://www.cnbcindonesia.com/tech/20230316071902-37-422064/sederet-pekerjaan-terancam-punah-siap-siap-ganti-profesi (cited 19 Juni 2023)
Ecoffet, A., 2023. Gpt-4 Technical Report. Cornell University. Available from: https://arxiv.org/abs/2303.08774v3 (cited 07 Juli 2023).
Fitria, J.D., 2017. Peramalan Jumlah Pasien Dbd Di RSUD Dr Soesilo Slawi Dengan Menggunakan Metode Dekomposisi Dan Triple Exponential Smoothing Winter. Tugas Akhir. Universitas Negeri Semarang.
Gunawan, A., 2023. Ancaman Chat Gpt Bagi Banyak Profesi Kreatif, Tetapi Bisa Bermanfaat Positif. Available from: https://www.kompasiana.com/ddigunn/63f235f104dff04b02235492/ancaman-chat-gpt-bagi-banyak-profesi-kreatif-tetapi-bisa-bermanfaat-positif (cited 19 Juni 2023)
Hansen, A.L, & Kazinnik, S., 2023. Can Chatgpt Decipher Fedspeak. Elsevier.
Available at: SSRN: https://ssrn.com/abstract=4399406 or http://dx.doi.org/10.2139/ssrn.4399406
https://data.jakarta.go.id/dataset/data-jumlah-penderita-dbd-hasil-penyelidikan-epidemologi-di-provinsi-dki-jakarta (cited 6 Agustus 2023)
https://kendalkab.bps.go.id/indicator/30/46/1/banyaknya-penderita-demam-berdarah.html. (cited 30 Agustus 2023).
https://www.kaggle.com/datasets/vincentgupo/dengue-cases-in-the-philippines. (Cited 8 Agustus 2023)
John, W., & Creswell, 2009. Research Desain: Qualitative, Quantitative And Mixed Methods Approach. Third Edition. SAGE Publications,Inc., New York.
Lira, AL, & Tang, Y., 2023. Can Chatgpt Forecast Stock Price Movement?. University of Florida. Available at: https://arxiv.org/pdf/2304.07619.pdf (cited 07 Juli 2023).
Makridakis, S.G., Wheelwright, S.C., & Hyndman, R.J., 1998. Forecasting Methods And Applications, Third Edition. Wiley: ISBN: 0471532339, 9780471532330
Open, AI., 2023. Introducing Chatgpt. [internet] [cited 07 Juli 2023]; Avalibale from: https://openai.com/blog/chatgpt
Open, AI., 2023. available from: https://chat.openai.com/auth/login (cited 22 November 2023).
Permana, A., 2023. Mengenal Chat Gpt, Algoritma Dibalik Kemajuan Kecerdasan Buatan. Avalaible from: https://www.itb.ac.id/berita/mengenal-chat-gpt-algoritma-di-balik-kemajuan-kecerdasan-buatan/59433 (cited 9 Juni 2023).
Prameswari & Ayu, R., 2015. Peramalan Tingkat Produksi Padi Di Jawa Timur Dengan Metode Exponential Smoothing: Pegels Classification Model A-2. Sarjana Thesis. Universitas Brawijaya.
Setiawan, D.A, Wahyuningsih, S. & Goejantoro, R., 2020. Peramalan Produksi Kelapa Sawit Menggunakan Winter’s Dan Pegel’s Exponential Smoothing Dengan Pemantauan Tracking Signal. Jambura Journal of Mathematics;Vol2No1:pp1-14.
Si C., Gan, Z., Yang, Z., Wang, S., Wang, J., Boyd-Gabrier, J, & Wang, L., 2023. Prompting GPT-3 to be reliable. Proceeding of a conference paper at ICLR. Available from: https://arxiv.org/pdf/2210.09150.pdf
Wiyanti, W., 2023. Effectiveness of single and double exponential smoothing: ses, arrses and holt’s linear for time series data prediction with trend and non-seasonal characteristic (covid-19 vaccinate case): efektivitas metode exponential smoothing untuk prediksi data runtun waktu pola tren dan non-musiman (studi kasus cakupan vaksinasi covid-19. Journal Matematika, Statistika Dan Komputasi, Vol.20 No.1, 52-54. DOI https://doi.org/10.20956/j.v20i1.27193
Yusuf., 2021. Pandemi Covid-19 Pacu Adaptasi Gunakan Teknologi Digital. Available from: https://www.kominfo.go.id/content/detail/32602/pandemi-covid-19-pacu-adaptasi-gunakan-teknologi%20digital/0/berita_satker (cited 29 Juni 2023)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.