Study Of Fuzzy Groups In Z_p-{0 ̅ } Group

Authors

  • Imelda Bo’bo’ Batunna Jurusan Matematika dan Statistika, Fakultas MIPA, Universitas Papua
  • Harina O.L Monim Jurusan Matematika dan Statistika, Fakultas MIPA, Universitas Papua
  • Junianto Sesa Jurusan Matematika dan Statistika, Fakultas MIPA, Universitas Papua

DOI:

https://doi.org/10.20956/j.v20i3.31827

Keywords:

Fuzzy subgroup, Group, Modulo, Subgroup

Abstract

Group theory is a field of abstract algebra that studies the structure of sets. Some concepts that are developments of group theory are fuzzy subgroups. Suppose that G is a group, a fuzzy subset μ of G is called a fuzzy subgroup of G if it satisfies  and  for each . However, not all groups have fuzzy subgroups. The aim of this research is to show that  is a classical group with multiplication operations in the group and determine fuzzy subgroups in the group . From the research results, it is found that the subset  with prime modulo integers  and  is a classical group with group multiplication operations and the fuzzy subset in the group  is a fuzzy subgroup and in general The properties of the classical group apply to the fuzzy subgroup, namely the singularity of the identity and the singularity of the inverse. However, there are properties of classical groups that do not apply to fuzzy subgroups, namely the law of cancellation

Downloads

Download data is not yet available.

References

. Abdy, M., Sukarna, S dan Abubakar, R., 2019. Suatu Kajian Tentang Grup Fuzzy. Journal of Mathematics, Computations, and Statistics, 1(1):78.

. Bejines, C., Chasco, M. J. and Elorza, J., 2021. Aggregation of fuzzy subgroups. Fuzzy Sets and Systems, 418:170–184.

. Dogra, S. and Pal, M., 2023 Picture Fuzzy Subgroup, Kragujevac Journal of Mathematics, 47(6), pp. 911–933.

. Fatkhur, R., Wardayani, A dan Suroto, 2014. Subgrup Fuzzy Atas Suatu Grup. Applied Microbiology and Biotechnology, 6(1):33–44.

. Herstein, I. N., 1964. Topics in Algebra. Edisi Kedua. Penerbit John Wiley & Sons. New York.

. Hungerford, T. W., 1973. Algebra. Penerbit Springer. Washington

. Jaradat, A. and Al-Husban, A. 2021. The multi-fuzzy group spaces on multi-fuzzy space. Journal of Mathematical and Computational Science, 11(6):7535–7552.

. Malik, D. S., Mordeson, J. N. and Sen, M. K., 2007. Introduction to Abstract Algebra. Penerbit The McGraw-Hill Companies, Inc. California

. Mordeson, J. N., Bhutani, K. R. and Rosenfeld, A., 2005. Fuzzy Group Theory. Penerbit Springer. USA

. Suryanti, S., 2017. Teori Grup. Penerbit UMG Press. Gresik

. Yasir, A., Abdurrahman, S dan Huda, N., 2016. Anti subgrup. Jurnal Matematika Murni dan Terapan, 10(2).

Downloads

Published

2024-05-15

How to Cite

Batunna, I. B. ., Monim, H. O. ., & Sesa, J. (2024). Study Of Fuzzy Groups In Z_p-{0 ̅ } Group. Jurnal Matematika, Statistika Dan Komputasi, 20(3), 580-595. https://doi.org/10.20956/j.v20i3.31827

Issue

Section

Research Articles