English Language Determinant and inverse of T-Sequence-Sylvester-Kac Matrix

Authors

  • Jeki Saputra Hasanuddin University
  • Amir Kamal Amir
  • Andi Muhammad Anwar

DOI:

https://doi.org/10.20956/j.v19i2.24141

Keywords:

Determinan Matriks, Inverse Matrix, Sylvester-Kac matrix

Abstract

The Sylvester-Kac matrix is also known as the Clement matrix The Sylvester-Kac matrix is widely used and applied both in processing, graphs and other fields. The Sylvester-Kac matrix developed in the paper is the T-Sequence-Sylvester-Kac matrix The calculation of the determinant, and inverse has always been a challenge for mathematicians to find. In this paper will be given the formulation of determinant, and inverse of the T-Sequence-Sylvester-Kac matrix

Downloads

Download data is not yet available.

References

Bevilacqua, R., & Bozzo, E., 2019. The Sylvester-Kac Matrix Space. Linear Algebra Applications, 430, 3131-3138.

Chu, W., 2010. Fibonacci Polynomials and Sylvester Determinant of Tridiagonal Matrix. Applied Mathematics and Computation, 216(3), 1018-1023.

Chu, W., 2019. Spectrum and Eigenvectors for a Class of Tridiagonal Matrices. Linear Algebra and Its Applications, 584, 499-516.

Chu, W., & Wang, X., 2008. Eigenvectors of Tridiagonal Matrices of Sylvester Type. Calcolo, 45(4), 217-233.

Fonseca, C. M., & Kılıç, E., 2020. A Short Note on The Determinant of a Sylvester-Kac Type Matrix. International Journal of Nonlinear Sciences and Numerical Simulation, 21, 361-362.

Fonseca, C. M., & Kılıç, E., 2021. A New Type of Sylvester–Kac Matrix and Its Spectrum. Linear and Multilinear Algebra, 69, 1072-1082.

Jiang, Z., & Zheng, Y. L., 2022. Characteristic Polynomial, Determinant and Inverse of a Fibonacci-Sylvester-Kac Matrix. Special Matrices, 10, 40-46.

Sylvester, J., 1854. Théoreme Sur Les Déterminants. Nouvelles Annales De Mathématiques, 13, 305.

Downloads

Published

2023-01-05

How to Cite

Saputra, J., Amir, A. K. . ., & Anwar, A. M. . (2023). English Language Determinant and inverse of T-Sequence-Sylvester-Kac Matrix. Jurnal Matematika, Statistika Dan Komputasi, 19(2), 391-399. https://doi.org/10.20956/j.v19i2.24141

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>