The Estimation of Residual Variance in Nonparametric Regression

Authors

  • Abdul Wahab Universitas Muslim Indonesia
  • I Nyoman Budiantara
  • Kartika Fitriasari

DOI:

https://doi.org/10.20956/j.v17i3.13192

Keywords:

Nonparametric regression, Rice estimator, GSJ estimator, Tong-Wang estimator

Abstract

Given a nonparametric regression model Yi = g(xi) + ei,    i = 1, 2, …, n, where Y is a dependent variable, x is an independent variable, g is an unknown function and e is an error assumed to be an independent, identical, and is distributed with mean 0 and variance σ2. In this research Rice estimator is used to determine the biased value of a residual variance estimator. The Rice estimator is given as follows: . The biased value of residual variance estimator of the Rice method is: , where  and. Using the Rice estimator, the Tong-Wang residual variance estimator is obtained, that is: , Where   , , , , ,  k = 1, 2, … , m. Based upon the data simulation by considering the exponential, arithmetical, and trigonometrical models, it is found that the MSE value of the Tong-Wang estimator tends to be less compared to those of the Rice estimator as well as the GSJ (Gasser, Sroka, and Jennen) estimator.

Downloads

Download data is not yet available.

References

Buckley, M. J., Eagleson, G. K., & Silverman, B. W. 1988. The Estimation of Residual Variance in Nonparametric Regression. Biometrika, 75(2), 189. https://doi.org/10.2307/2336166

Dette, H., Munk, A., & Wagner, T. 1998. Estimating the variance in nonparametric regression - what is a reasonable choice? Journal of the Royal Statistical Society B, 60(4), 751–764.

Drygas, H. 1972. The estimation of residual variance in regression analysis. Mathematische Operationsforschung Und Statistik, 3(5), 373–388. https://doi.org/10.1080/02331887208801094

Evans, D., & Jones, A. J. 2008. Non-parametric estimation of residual moments and covariance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2099), 2831–2846. https://doi.org/10.1098/rspa.2007.0195

GASSER, T., SROKA, L., & JENNEN-STEINMETZ, C. 1986. Residual variance and residual pattern in nonlinear regression. Biometrika, 73(3), 625–633. https://doi.org/10.1093/biomet/73.3.625

Liitiäinen, E., Verleysen, M., Corona, F., & Lendasse, A. 2009. Residual variance estimation in machine learning. Neurocomputing, 72(16–18), 3692–3703. https://doi.org/10.1016/j.neucom.2009.07.004

Mendez, G., & Lohr, S. 2011. Estimating residual variance in random forest regression. Computational Statistics & Data Analysis, 55(11), 2937–2950. https://doi.org/10.1016/j.csda.2011.04.022

Octavanny, M. A. D., Budiantara, I. N., Kuswanto, H., & Rahmawati, D. P. 2020. Nonparametric Regression Model for Longitudinal Data with Mixed Truncated Spline and Fourier Series. Abstract and Applied Analysis, 2020, 1–11. https://doi.org/10.1155/2020/4710745

Purnomo, J., Budiantara, I., & Fitriasari, K. 2008. Weight estimation using generalized moving average. IPTEK The Journal for Techhnology and Science, 19(4).

Rice, J. 1984. Bandwidth Choice for Nonparametric Regression. The Annals of Statistics, 12(4), 1215–1230. https://doi.org/10.1214/aos/1176346788

Rohatgi, V. . 1976. An Introduction to probability theory and mathematical statistics. USA: john Wiley & Sons Inc.

Serfling, R. J. 1980. Approximation theorems of mathematical statistics. USA: john Wiley & Sons Inc.

Spokoiny, V. 2002. Variance Estimation for High-Dimensional Regression Models. Journal of Multivariate Analysis, 82(1), 111–133. https://doi.org/10.1006/jmva.2001.2023

Tong, T., & Wang, Y. 2005. Estimating residual variance in nonparametric regression using least squares. Biometrika, 92(4), 821–830. https://doi.org/10.1093/biomet/92.4.821

Downloads

Published

2021-05-12

How to Cite

Wahab, A., Budiantara, I. N. ., & Fitriasari, K. . (2021). The Estimation of Residual Variance in Nonparametric Regression. Jurnal Matematika, Statistika Dan Komputasi, 17(3), 438-446. https://doi.org/10.20956/j.v17i3.13192

Issue

Section

Research Articles